Emax と心筋酸素消費量との相関

菅 弘之*

1. はじめに

心臓の収縮性 (contractile state) と酸素消費量 (oxygen consumption) との関係についての研究 は,1959年の Greola ら¹,1964年の Krasnow ら²) などに始まる. カテコールアミンなどの陽性変力 作用剤 (positive inotropic agent) は、動脈圧、心 拍出量、心拍数を一定に保っていても、酸素消費 量を著しく増す³. この際、心仕事(量)が増さ ないので、カテコールアミンには酸素浪費効果 (oxygen wasting effect) があると言われている⁴.

Sonnenblick は、この浪費される酸素が、無負 荷最大短縮速度 V_{max}, (dp/dt)_{max} などの収縮性の 指標に比例することを見出した³⁾. Gibbs は,心 筋の熱産生の実験から,陽性変力効果によって増 す熱産生量は、主として筋の活動化 (activation), すなわち形質膜の電気的興奮にはじまって, 収縮 蛋白の相互反応を引き起こす,いわゆる興奮収縮 連関 (excitation-contraction coupling) が亢進す ることによるものと考えている⁵⁾. この際エネル ギー源である ATP が多く分解されるが、これは 主として筋小胞体 (sarcoplasmic reticulum) のカ ルシウムイオン取り込みが亢進することによると 考えられている⁶⁾. カルシウムイオンに選択的に 発光する蛋白であるエクリオンによって収縮の時 相と形質内自由カルシウム濃度変化が関係づけら れてきたが, それによると収縮が最大に達する頃 には、一度増した自由カルシウム濃度が再び低下 してくる7).従って筋小胞体によるカルシウムイ オン取り込みも、収縮期に起こる現象であり、こ れも興奮収縮連関に含めて考える. このような背

*国立循環器病センター研究所循環動態機能部(部長)

景のもとで,我々も心臓の収縮性と酸素消費量と の関係に大変興味をもって生理学的研究を進めて きている⁸⁾.ここでは,我々の最近の知見を中心 に,この問題の一つの新しい見方を御紹介させて いただく.

2. 心室の収縮性の指標 Emax

我々が収縮性の指標として Emax を提案してか ら約10年になる⁹⁾¹⁰⁾. E_{max} の基本的な考え方は, 単に左心室の収縮末期圧容積関係を直線で近似し て、その勾配を Emax と呼んで、収縮性の指標と して使うというような実用的なものだけではな く, 左心室の瞬時の圧, 容積変化に見られる現象 を統一的に説明できるような心室固有の特性を求 めようという考えからきている. イヌの左心室を 用いての多くの実験の結果、図1Aにみられるよ うに、収縮性が安定なイヌ左心室標本では、生理 的範囲内の前負荷、あるいは後負荷の変化にもか かわらず, 圧容積軌跡の左上角は, 近似的にでは あるが、一つの直線上に乗るか、またはその近傍 に来ることが明らかになった10).この直線を収縮 末期圧容積直線と呼ぶ、そして収縮開始からこの 収縮末期までを収縮期と呼び, その間の圧容積関 係は、図1Bにみられるように拡張末期圧容積曲 線と収縮末期圧容積直線との中間に来る. 種々の 陽性, 陰性の変力作用剤によって, この収縮末期 圧容積関係直線の勾配 Emax が増減することから, Emax を心室全体の収縮性の指標として提案した¹⁰⁾.

その後、収縮性が非常に高い場合¹¹),低い場合 ¹¹),局所虚血のばあい¹²),人工液灌流下のラット, 家兎心の場合,子イヌ心¹³⁾などの場合に、収縮 末期圧容積関係が必ずしも直線で近似できない場 合も知られてきており、ヒトの心収縮性の評価が

図1 (A)左心室の圧容積図.3つの圧容積軌跡が描 かれているが,その収縮末期の点(●)はほ ぼー直線(太実線)上にある.収縮期途中の 一定時点の点(○)は,途中の別の線(点線) 上にある.(B)左心室の圧容積関係の時間変 化.(c)左心室の可変弾性モデル.壁の弾性が 拡張期から収縮期に大きくなる.(D)この弾性 変化に伴う機械的エネルギー変化は,外的仕 事とポテンシャルエネルギーの増加分からな る.(E)等容性収縮による機械的エネルギー産 生量を表す圧容積面積(PVA).PVAはポテ ンシャルエネルギーのみからなる.(F)拍出収 縮による機械的エネルギー産生量を表す圧容 積面積(PVA).PVAはポテンシャルエネル ギーと外的仕事からなる.

 E_{max} のみで単純に行なえるかどうか,末解決の 点が多い.また慢性の負荷に対する適応の結果, 肥大,拡張などが起こると心筋の収縮性が同じで も E_{max} が変化するので, E_{max} が直接心筋の収縮 性を反映しない場合もある¹⁴⁾.このように収縮性 の指標としての E_{max} の限界はあるものの, E_{max} の概念は、心室の力学、ポンプ特性を考える上で 有用である.つぎに、E_{max}の概念が心室のエネ ルギー消費量とよく関係するという我々の新しい 考え方を御紹介したい.

3. 心室の収縮期圧容積面積 PVA

図1A, Bのように心室の収縮期の圧容積関係 を近似すると、心室の力学モデルとして図1Cの ようないわゆる可変弾性モデルを考えることがで きる¹⁵⁾. すなわち心室の弾性(コンプライアンス の逆数)が拡張期に小さく、収縮期に増大し、収 縮末期 E_{max} になるというものである. この際, 心室の機械的エネルギーの変化は、図1Dに示す ように一つは外的機械的仕事,他の一つはポテン シャルエネルギーの増加という2つのエネルギー の和である15). この総機械的エネルギーは、心筋 の機械的収縮によって起こると考えられるが、こ れは,図1E,Fのように圧容積図面上の特定の 面積として求めることができる. Eは等容性収縮 の場合であるが、総機械的エネルギーは、等容性 収縮期間中の圧容積軌跡と収縮末期圧容積直線と 拡張末期圧容積曲線とに囲まれた三角形の面積に 等しい. Fは通常の拍出収縮の場合であるが,総 機械的エネルギーは,外的機械的仕事とその左側 で収縮末期と拡張末期の圧容積線にはさまれた部 分の和に等しい. このような総機械的エネルギー を表す面積を収縮期圧容積面積(systolic pressure-volume area, PVA と略記)と呼ぶこと にしている¹⁵⁾. この部分の面積の単位は mmHg ml であるが、これは、1 mmHg ml=1.33×10-4 J(ジュール)の物理的変換が可能であって、エネ ルギーの単位である.

4. 酸素消費量 VO₂

酸素消費量 1 ml はグルコース,脂肪酸などの 代謝基質の酸化によって19-21ジュールのエネル ギーを産生するが,その内60-70%のエネルギー が ATP の中に化学的エネルギーとして貯えら れ,残りは熱となって放散される⁵⁾. 心臓では嫌 気性代謝によって産生される ATP 量はわずかで あるので,通常問題にしない. 従って,心臓では 酸素消費量をエネルギー入力量と考えることがで きる.酸素消費量 VO₂ は,冠血流量と冠動静脈 酸素濃度較差との積として求まる.酸素濃度較差

図2 動物実験システム、LV=イヌ摘出交叉灌流心臓標本の左心室、 BELLOFRAM PUMP=心室容積制御計測用ポンプ、SHAKER=加振器、OXIMETER=酸素消費量測定用オキシメータ、現在は AVOX シ ステムを用いている、FM=冠血流量測定用電磁流量計、データは NEC 三栄のシグナルプロセッサー 7T17 でオンライン処理、

図3 実験中のデータ例. 左上下は心室圧と容積曲線. 中上は圧容積軌跡と外的仕事(軌跡内)とポテンシャルエネルギー(黒三角形). 右上は圧容積軌跡の重ね書き. 右下は PVA(横軸)と酸素消費量(縦軸)との相関図. 中下はオンライン計算によるデータ記録.

を直接求める装置として米国製の AVOX システムがあり、米国製の Lex $-O_2$ -Con 装置で絶対値の較正を行った後使用している.

5. 動物実験の方法

なるべく生理的な条件下で収縮,拍出する左心 室の収縮性,収縮期圧容積面積,酸素消費量を正 確に計測するために,図2のようなイヌ摘出交叉 灌流心臓標本を用いた.この左心室の中に水を満 たした風せんを装着し,特殊な自家製のサーボポ

図4 酸素消費量 (VO₂) と PVA との直線相関. 等容性収縮(●)と拍出性収縮(○)のデー タをまとめている.

ンプに接続して、左心室容積の精密な制御と正確 な計測を行った. コーニクスバーグ社製 P-7 型 マイクロ圧トランスジューサで左心室圧を測定し た. サーボポンプの容積のコマンド信号を様々に 変えて、左心室の前負荷、後負荷を広範囲に変え て、多くの異なる圧容積軌跡を描いた. この圧容 なるべく生理的な条件下で収縮、拍出する左心積 信号から前述の E_{max}, PVA を日本電気三栄の 7T17 シグナルプロセッサにてオンラインで計

図6 同じ心臓におけるエピネフリン投与前と後の VO₂-PVA 関係の比較.

算,表示した.同時に上述の方法で VO₂ も求めた.図3に実験中のデータの一例を示す.

6. VO₂-PVA 関係

1)前負荷,後負荷の変化

 E_{max} が一定で収縮性の安定な左心室にて,前 負荷,すなわち拡張末期圧容積,および後負荷, すなわち収縮期圧を広範囲に変えて,PVA を大 巾に変化させ,VO₂ との関係を見ると等容性収 縮のみの場合も拍出収縮のみの場合もそれぞれ非 常に良い直線関係が見られた.図4のように,同 じ E_{max} の場合の両者をまとめて見ると,これも また一つの直線関係で表された.このことから, ら,拍出の有無に関わらず,VO₂ と PVA は一価 関数的に関係することが明らかになった¹⁶.

2) PVA 一定の等容性収縮と拍出収縮

PVA が VO₂ と一価的に関係することをさらに 確かめるために,図5のように同じ E_{max} のもと で PVA が同じ値となるような等容性収縮と拍出 収縮を数分毎に交互に切り替えて VO₂ を測った ところ,VO₂ はほとんど変わらないことが明ら かになった¹⁷⁾.この際,収縮期圧,ラプラスの式 によって求めた収縮期張力,収縮期圧の時間積分 (すなわち TTI),収縮期張力の時間積分(すな わち TFI)のどれも等容性収縮の場合にくらべて 拍出収縮において著しく小さかった.この結果, 従来から VO₂ の規定因子として有力な指標は, 必ずしもそうではないことが明らかになった.

3) 心拍数の変化

一分当りの VO₂ は心拍数が増すとそれにつれ て増加することはよく知られているが、VO₂-PVA 関係 (この関係では VO₂ は常に一拍当りで ある)が心拍数によって変わるかどうかを見ると、 ペーシング数が80-220拍/分の範囲では、VO₂-PVA 関係はほとんど変化しなかった¹⁸⁾. また前 負荷としての拡張末期容積と一回拍出量とを一定 に保ちながら、心拍数を広範囲に変えても、PVA はあまり変わらなかったが、VO₂ もまたあまり かわらなかった.

4) 収縮性の変化

次に,エピネフリンおよびカルシウムイオンを 用いて,心室の収縮性を高めて E_{max} を増加させ て, VO₂-PVA 関係を見たところ,図6のような 結果が得られた.図6はエピネフリンの場合で, $2\mu g/分$ の冠注によって E_{max} が約6mmHg/ml から約11mmHg/ml まで,約80%増加した場合 の例であるが,VO₂-PVA 関係はエピネフリンの 前後で共に直線的であり,ほぼ平行的な上方移動 を示した¹⁹⁾.カルシウムイオン冠注にて, E_{max} を 同程度増加させると,この場合もVO₂-PVA 関 係は,同様に上方へ平行移動した¹⁹⁾. どちらの場 合も,PVA がゼロの無負荷収縮のVO₂ が E_{max} の増加と共に増大した¹⁹⁾.

 E_{max} と VO₂-PVA 関係の勾配との関係を見て みると、 E_{max} の増大に伴って、勾配がやや増加 する傾向にあったが、統計的には有意ではなかっ た.次に、VO₂-PVA 関係の VO₂ 軸の切片と E_{max} の増加との関係を見ると、統計的に有意の正の相 関を示した¹⁹.

5) 基礎代謝と活動化エネルギー

PVA がゼロの無負荷収縮の VO₂ は主として基 礎代謝と活動化エネルギーとから成る. 電気的興 奮のためのエネルギーはわずかである. 基礎代謝 は KCl で心停止を起こした左心室の VO₂ に等し い. 無負荷収縮 VO₂ と KCl 停止後の VO₂ の差 が活動化エネルギーになる. KCl 停止心の VO₂ はエピネフリンでもカルシウムでも,ほとんど増 加しなかった¹⁹⁾. 従って,これらの陽性変力作用 薬は,主として活動化エネルギーを増加させるこ とが明らかになった. このことは,収縮性の増加 が興奮収縮連関のカルシウム取り込みのエネル ギー消費を増す事実とよく一致する.

6)エネルギー効率

これまでの PVA の単位は mmHg ml であり, VO₂ の単位は mlO₂ であるが、1mmHg $ml=1.33 \times 10^{-4}$ J であり、 $1 ml O_2=20$ J である から、VO2-PVA 関係から、心臓へのエネルギー 入力量である VO2 から心臓の機械的エネルギー 出力量までのエネルギー効率が求められることに なる. この効率は PVA がゼロの時0%であり, PVA の増加に伴って30%ぐらいにまで達する20). 機械的負荷がかかっている時の VO2 から無負荷 収縮の VO2 を差し引いたものは、心臓の機械的 収縮に使われる VO2 と考えられるが、このVO2 成分から PVA へのエネルギー効率は VO₂-PVA 関係の直線の勾配の逆数に等しく、PVA、VO2 に関わらず一定の値になった、この効率は30~50 %であることが、実験の結果から明らかになった19). Emax の増加が VO2-PVA 関係をほぼ平行移動さ せる事から、この効率は Emax によってはほとん ど変わらないと考えられる.

7.考察

これまでの実験結果をまとめると図7のように なる. すなわち,収縮性が一定ならば, VO_2 は PVA に直線的に比例して変化する. この際, PVA の大きさのみが重要であって,その成分, 即ち外的仕事とポテンシャルエネルギーとの比率 は問題ではない. そして,収縮性が増すと, PVA 変化に対しての機械的収縮のための VO_2 の変化 は変わらないが, PVA のゼロの場合の VO_2 が著 しく増加する.

この無負荷の場合の VO₂ の増加は主として活 動化エネルギーの増加によることが示されたが, この活動化エネルギーとして主たるものは興奮収 縮連関のうちの小胞体によるカルシウムイオンの 取り込みであろう⁵⁾⁶⁾.小胞体にはカルシウムイオ ンの濃度に応じて ATP を分解して中に取り込む ATP アーゼがあり,形質中のカルシウムイオン 濃度が収縮期の初期に高まると直ちにそれの取り 込みが始まり,多量の ATP が消費される⁶⁾. ATP 1 分子当り 2分子のカルシウムイオンが取 り込まれる.カテコールアミンやカルシウム自身 によって収縮に携わるカルシウムイオン量が増す

図7 酸素消費量の主な成分とそれらに及ぼす収縮 性の影響.(左)低い収縮性.(中)高い収縮 性.この際には、ACTIVATION 成分のみ が増加する.(右)機械的収縮に使われる酸 素消費量成分.ACTIVATION=活動化エネ ルギー,または興奮収縮連関のための酸素消 費量.BASAL=基礎代謝.MECHANICAL= 機械的収縮のための酸素消費量.

と,消費された ATP の量も増す⁶⁾. この機序が 活動化のための VO_2 を増加させたのであろうと 考えられる.

このエネルギーが PVA や拡張末期容積の大小 に依存せずに一定かどうかは、未解決の問題であ るが、もし筋長依存性の活動化 (length-dependent activation)²¹⁾によって拡張末期容積の増加 につれて、活動化エネルギーが増えるならば、図 7に示された機械的収縮のための VO₂ は、やや 過大評価されたことにならう.しかし、拡張末期 容積が大きいところから後負荷を非常に小さくし て PVA をゼロとした収縮の VO₂ は、心室容積 がほぼゼロにおける無負荷収縮の VO₂ とほとん ど同じであることから²²)、筋長依存性の活動化エ ネルギー成分はほぼ無視できると考えられる.し かし、PVA が正の時に直接活動化エネルギーを 測定できないので、最終的な結論はまだ出せない.

収縮性を高める作用をもつカテコールアミンと カルシウムとでは薬理作用機序が異なる.細胞外 液のカルシウム濃度が増すと電気的興奮に伴うカ ルシウム流入が増すと収縮に関与するカルシウム 量が増して収縮性が増す.それと同時に,小胞体 が取り込むべきカルシウム量も増して,ATPの 消費量も増す.ところがカテコールアミンの場合 には、受容体を介してサイクリック AMP が増し て、小胞体の ATP アーゼ活性が増し、取り込ま れるカルシウムの量が増す⁶⁾. そのための ATP 消費量が増すと同時に、収縮力も増す. このよう に、薬理的作用機序が異なるにも関わらず、同程 度の E_{max} の増加に伴う活動化エネルギーの増加 も同程度であることは¹⁹⁾、同程度の E_{max} の増加 が同程度の小胞体取り込みカルシウム量の増加に もとづいていることを示唆しているように思われ る. これに関して、果たして活動化エネルギーを 増加させないで、収縮性を高める変力作用剤が一 般論としてまた新しい強心薬の中にあるかどうか は、大変に興味がある. 今後のより詳細な検討が 望まれる.

(研究協力者:後藤葉一,五十嵐祐一郎,安村良 男,能沢 孝,二木志保,田中伸明,上西正明)

文 献

- Gerola, A., Feinberg, H., and Katz, L. N.: Role of catecholamines on energetics of the heart and its blood supply. Am. J. Physiol., 196:394-400, 1959.
- 2) Krasnow, N., Rolette, E. L., Yurchak, P., Hood, W. B., Gorlin, R.: lsoproterenol and cardiovascular performance. Am. J. Med., 37:514-525, 1964.
- 3) Sonnenblick, E. H., Ross, J., Covell, W. J., Kaiser, G. A., and Braunwald, E.: Velocity of contraction as a determinant of myocardial oxygen consumption. Am. J. Physiol., 209:919-927, 1965.
- 4) Coleman, H. N., Sonnenblick, E. H., and Braunwald, E.: Mechanism of norepinephrine-induced stimulation of myocardial oxygen consumption. Am. J. Physiol., 221:778-783, 1971.
- 5) Gibbs, C. L.: Cardiac energetics. Physiol. Rev., 58:174-254, 1978.
- 6) Tada, M., Yamamoto, T., and Tonomura, Y.: Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol. Rev., 58:1-79, 1978.
- 7) Allen, D. G., and Kurihara, S.: Calcium transients in mammalian ventricu lar muscle. Europ. Heart J., 1(suppl A):5-15, 1980.
- 8) Suga, H., Yamada O., and Goto, Y.: Enegetics of ventricular contraction as traced in the pressurevolume diagram. Fed. Proc., 43:2411-2413, 1984.
- 9)菅 弘之: 左心室の圧力-容積係数によるポンプ作用の解析. 医用電子と生体工学.7:406-415, 1969.
- 10) Suga, H., Sagawa, K., and Shoukas, A. A.: Load independence of the instantaneous pressurevolume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio.

Circ. Res. 32:314-322, 1973.

- 11) Sagawa, K., Maughan, W. L., Burkhoff, D., and Yue, D.: The similarity between ventricular pressure-volume relation and muscle force-length relation. Cardiovasc. Res., 119:523, 1985.
- 12) Sunagawa, K., Maughan, W. L., and Sagawa, K.: Effect of regional ischemia on the left ventricular end-systolic pressure-volume relationship of the isolated canine hearts. Circ. Circ. Res., 52:170-178, 1983.
- Suga, H., Yamada, O., Goto, Y., and Igarashi, Y.: Peak isovolumic pressure-volume relation of puppy left ventricle. Am. J. Physiol., 250:H167– H172, 1986.
- 14) Sasayama, S., Franklin, D., and Ross, J.: Hyperfunction with normal inotropic state of the hypertrophied left ventricle. Am. J. Physiol., 232: H418-H425, 1977.
- 15) Suga, H.: Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am. J. Physiol., 236:H498-H505, 1979.
- 16) Suga, H., Hayashi, T., and Shirahata, M.: Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am. J. Physiol., 240:H39-H44, 1981.
- 17) Suga, H., Hayashi, T., Suehiro, S., Hisano, R.,

Shirahata, M., and Ninomiya, I.: Equal oxygen consumptions with equal systolic pressure volume areas in canine left ventricle. Circ. Res., **49**: 1082–1091, 1981.

- 18) Suga, H., Hisano, R., Hirata, S., Hayashi, T., Yamada, O., and Ninomiya, I.: Heart rate independent energetics and systolic pressure volume area in dog heart. Am. J. Physiol., 244:H206– H214, 1983.
- 19) Suga, H., Hisano, R., Goto, Y., Yamada, O., Igarashi, Y.: Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ. Res., 53:306-318, 1983.
- 20) Suga, H., Igarashi, Y., Yamada, O, and Goto, Y.: Mechanical efficiency of the left ventricle as a function of preload, afterload, and contractility. Heart Vessels 1:3-8, 1985.
- Allen, D. G., Kurihara, S.: The effect of muscle length on intracellular calcium transients in mammalian cardiac muscle. J. Physiol., 327:79-94, 1982.
- 22) Suga, H., Yamada, O., Goto, Y., and Igarashi, Y.: Oxygen consumption and pressure-volume area of abnormal contractions in canine heart. A. J. Physiol., 246:H154-H160. 1984.