NMRと心機能

田中邦雄*

1. はじめに

1973年にそれまでの画像診断法とは全く異なる 技術である NMR (Nuclear Magnetic Resonance:核磁気共鳴)法を用いた映像法の基本原 理が提案され,以後英,米国を中心に活発な基礎 研究が展開され、1980年代に入り臨床用 NMR 映像装置が開発されるに至った1). その後, 今日 まで急速な技術改良が進められ2), 我国でも既に 200台以上の装置が臨床応用されている.臨床用 NMR 映像装置は最近では MRI (Magnetic Resonance Imaging) と呼ばれるが、その基本と なる NMR 現象は1946年に Bloch ら及び Purcell らによってそれぞれ独立に観察された.本法は水 素(プロトン)などの原子核を静磁場中に置き、 これにラジオ波帯の電波を照射し、そのエネル ギーの吸収を観測する分析法の1つであり、有機 化学などの分野で構造解析手段として広く用いら れてきた. 原理的にX線などの被曝がなく,細胞 や組織に対して非破壊的な測定法であり、生体内 に自然に存在する原子核 (MRI では主に生体水 分中のプロトンを対象)の分布や存在状態を反映 する信号を用いるので, 生理学的, 生化学的情報 を含んだ画像を提供する.また単に画像だけでな く, 生体内のリン酸化合物などによる代謝動態を 体外から分析 (MRI に対して MRS: Magnetic Resonance Spectroscopy と称する) することも 可能となってきた. X線 CT と比較して, 骨, 空 気による artifact がないこと、横断断層像だけで なく任意の断層像が容易に得られることなどか ら、最近では特に脳神経領域において MRI はX

線 CT をしのぐ技術となりつつある.一方,心臓 領域では造影剤や放射性同位元素を用いることな く流血と心室壁,血管壁との区別が明瞭であるこ とから,心形態,機能をはじめ心筋性状や心筋代 謝の非侵襲的診断法として期待されている.本法 の最大の短所は測定時間が長いことであったが, 最近では心電図同期法の開発や高速撮像法の開発 などにより,心大血管領域での有用性が高まって いる.本稿では,NMR および MRI/MRS の基 本原理とその特徴,またその心機能評価への応用 の現状について解説する.

2. NMR 現象と得られる情報^{1,3,4)}

2.1 NMR の原理

NMR 現象は生体や各種物質中に自然に存在す る原子核(例えばプロトン¹H, リン³¹P, 炭素¹³C, ナトリウム²³Na など質量数が奇数のもの)によ って観測される.これらの原子核は図1(a)に示す ように,正の電荷をもって回転運動(スピン)を している.電荷の回転運動によって電流が発生し, これに鎖交して磁力線が生じ(同図(b)),この結 果(c)に示すように,原子核は回転する非常に小さ な棒磁石(核スピン又は核磁石と称する)とみな

^{*}旭川医科大学医学部附属実験実習機器センター

370 循環制御第9巻第3号(1988)

すことがてきる. さて,回転運動を持たない普通 の棒磁石を強力な磁石の中に置いたとき,逆極性 同士が引き合って静止する. しかし,核磁石は自 分自身が回転しているので,外部から与えた静磁 場 (H₀)の方向を中心軸としてその周りに一定周 期で斜めに回転する. この運動は歳差運動と呼ば れ,コマの首振り運動と類似している. この歳差 運動の回転周期 ω_0 は次式で表される.

 $\omega_0 = 2\pi f_0 = \gamma H_0$ (1) ここで、 H_0 は外部から与えた静磁場強度、 ω_0 又 は f_0 はラーモア周波数と呼ばれる. γ は核磁気 回転比で、原子核の種類によって異なる定数であ る.したがって、一定の静磁場強度の下では原子 核の種類によって歳差運動の周波数が異なる.さ て、実際に NMR を観測しようとする試料は多 数の核スピンの集合体である。外部から静磁場を 与えないとき、核スピンは図2(a)に示すようにそ れぞれ勝手な方向を向いている。しかし、核スピ ン集合体を静磁場中に置くと、同(b)に示すように 核スピンは静磁場と同一方向と反対方向を向いて

歳差運動する2群に分かれる.核スピン集合体が 熱的に平衡状態にある場合には、H₀と同方向の 核スピンの数は逆方向の核スピン数よりわずかに 多い. この結果,核スピン系全体としては同(c)に 示すように、核スピンのもつ磁気的モーメントの 総和として Ho 方向に磁化Mが現われる. この状 態にある核スピン系に外部から前記(1)式のラー モア周波数に一致するラジオ波を H₀ と直交方向 から照射すると,系全体としてはラジオ波からの エネルギーの吸収が観測される.この現象を磁化 Mの運動としてみると、図3に示すようにエネル ギーの吸収に伴って最初 Ho 方向(Z軸)にあっ た磁化がΖ軸から次第に角度 θ(フリップアング ルと呼ぶ) 倒れ、 θ が増大しながらついには XY 平面上に倒れ、この平面上での回転運動となる. このとき磁化の Z 成分は消失するが、横方向成分 は最大となりY軸上に置かれた検出コイルに磁化 の変化に応じた誘起電圧として NMR 信号が観 測される. ラジオ波エネルギーを次々に吸収する ためには,一度吸収したエネルギーを放出し,最 初の平衡状態に戻る必要がある.これを緩和現象 と呼ぶ.NMR では測定物質を核スピンの集合体 であるスピン系と、それ以外の環境例えばブラウ ン運動や分子内振動などの集合体である格子系の 2つに大別する.緩和現象はこの2つの集合体の 間で行なわれる熱的エネルギー交換である.これ には2つの過程があり、1つはスピン系と格子系 との間,他はスピン系同士の間で生ずる.前者は 核スピンからそのエネルギーを格子系に放出しな がら、XY 平面上に例れた磁化Mが次第に H₀ 方 向にその大きさを回復して行く現象である.この 磁化の回復の速さをスピンー格子(又は縦)緩和 時間 (T1) と呼ぶ. 後者は核スピン系の熱運動に よるスピン同士の衝突や,静磁場の不均一に伴う スピン系内でのエネルギー交換による. これによ り横成分磁化は次第に減衰するが、その減衰の速 さをスピンースピン(又は横)緩和時間(T₂)と 呼ぶ、これらは分子の運動性についての情報をも たらす他,後述の画像構成上重要なパラメータで もある.

2.2 NMR 測定法と得られる情報

NMR 測定装置は理化学分析用,映像用ともに 基本的には静磁場発生用磁石,ラジオ波発生用の 発振器及び信号検出器で構成される.NMR 信号

の観測法として,前記(1)式を満足する周波数の 強いラジオ波を短時間照射するパルス法が用いら れる.すなわち,図4(a)に示すように瞬間的にス ピン系を熱的に飽和させ,乙方向(静磁場方向) 磁化 Mz をY軸上に引き倒す90°パルスと,一乙 軸上に転倒させる180°パルスが用いられる.90° パルス照射後,Y軸上に倒された過渡的な磁化に より自由誘導減衰信号 (Free Induction Decay: FID) が検出され,この信号をフーリエ変換すれ

ば共鳴スペクトルが得られる. このスペクトルの 強度はスピン密度情報を与える.また、この2つ のパルスを組み合わせることにより、前記緩和時 間 T₁, T₂ の測定ができる. T₁ の測定は 180°-t-90° のパルス系列 (Inversion Recovery, IR:反転回復法)が用いられる. すなわ ち,図5に示すようにまず磁化 Mz を180°パルス で -Z 方向に反転させ,次でt時間後にZ方向 に回復してきた縦方向磁化 Mz(t) を90°パルスで XY 平面に倒して FID を観測する. さらに時間 t を変えてそれぞれの時間における回復磁化 Mz(t) を何点か測定することにより、磁化の回復 する時定数として T1 が求まる. T2 の測定は 90°-t-180° のパルス系列 (Spin Echo, SE:ス ピンエコー法)が用いられる.図6に示すように、 90°パルス照射後にY軸上に倒れた磁化は、静磁 場の不均一などにより位相が次第にばらばらにな り, XY 面内で時計方向と反時計方向に磁化が回 転する. ここで90°パルスからt時間後に180°パ ルスを照射し、磁化を反転する、磁化は同じ方向 に回転を続けながら反転するので, 更に t 時間後 (90°パルス照射から 2t 時間後) には再び -Y 軸 上に位相が揃うことになり,スピンエコー信号が 観測される.時間 t を変えて各時点でのスピンエ コー信号を観測することにより、スピンエコー信 号の減衰時定数として T2 が求まる. T1, T2 は分 子の運動性についての情報をもたらす他、組織の 性状を反映する重要なパラメータである. スピン 密度と緩和時間は後述の MRI における画像構成 パラメータとして用いられる.また、同一の核種 であってもその周囲の環境の違い、特に核の周囲 の電子が作り出す局所の微小磁場により、核が実 際に感ずる磁場が百万分の1~数十万分の1とわ ずかではあるが共鳴周波数が異なる.これを化学 シフトと呼び、そのシフト量は化学基によって異 なることから, 例えばリン酸化合物の同定や結合 様式などが知られ, NMR スペクトル測定 (MRS) に最も重要なパラメータである.

2.3 NMR 映像法の原理^{1,5)}

生体内から得られる NMR 信号によって画像 を構成するためには,空間的な位置情報を得るこ とが必要である.分析用 NMR 測定装置では磁 石空間内で静磁場強度が一定となっている.した がって,プロトンが全身に分布している生体では

断面全体からの平均的な NMR 信号が得られる に過ぎない. そこで NMR 映像法では前述のよ らに共鳴周波数が静磁場強度に比例することを利 用し、図7に示すように静磁場強度が線形に変化 する線形勾配磁場を用いている.この結果,磁場 の勾配に対応して各位置で異なった周波数の共鳴 信号の合成されたものが観測される. この信号を フーリエ変換すれば各々の位置に対応したスピン 密度分布が得られる. 被測定体の周りに多方向へ 磁場勾配を切り換え、観測された FID 信号を逆 フーリエ変換して二次元面に逆投影すればスピン 密度画像が得られる. この方法は技術的にはX線 CT と同様投影-像再構成法である. その後 NMR 特有の技術を用いた映像法がいくつか提案 されたが、線形勾配磁場を用いる点では共通して いる. 最近はデータ採取時間の短縮や磁場の不均 一の影響を少なくするために,線形勾配磁場に加 えて図6に示したように磁化の位相に位置情報が 含まれることに着目した2次元フーリエ変換法が 主流となっている.NMR 映像法ではX線など電 離性放射線を必要としないので、放射線障害がな く非侵襲的な測定法である.また、骨や空気の影 響がない他、磁場勾配の方向を電気的に変えるこ とができるので、被験者や検出器を動かすことな く任意の方向からの断層像が容易に得られる. さ て、NMR 画像は前述のように組織中のスピン密 度と緩和時間 T₁, T₂の差異によって構成される. しかし、これらのパラメータは完全に分離独立し て測定されるのではなく、測定条件の設定次第で 同一部位でも大幅に異なってくる. スピン密度を 十分反映する画像とするには,磁化の熱平衡状態

への回復が必要であり,このためには緩和時間 T₁ より少なくとも数倍以上の時間間隔を置いて 90°パルスを照射する必要がある.したがって、 真のスピン密度画像を得ようとするとデータ採取 に要する時間が長くならざるを得ない. 実際には 3T1 程度のパルス繰返し時間で測定され、便宜上 スピン密度像と呼んでいる.また,前記緩和時間 の測定に用いる2つのパルス系列も画像データ採 取法として用いられる.反転回復法 (IR) では, 最初の180°パルスから2回目の180°パルスまでの 繰返し時間と、180°パルスと90°パルスの間隔を 適当に設定することにより、T1 強調画像が得ら れる. 同様にスピンエコー法 (SE) では T2 強調 画像が得られる. これら T1, T2 パラメータの利 用により、単に組織によるX線吸収量の差を用い るX線 CT 像に比べて軟部組織に対する高いコン トラスト分解能が得られる.したがって、本法に よれば形態情報だけでなく,組織性状の評価も可 能である.なお、本法の欠点として、撮像時間が 長いこと(数分程度),ペースメーカ植込み患者 や金属製外科的クリップを有する患者への適用が 制限されることなどが挙げられる.

3. NMR と心機能

3.1 MRI と心機能

心臓領域において、MRI によれば造影剤や放 射性医薬品を使用せずに流血と心室壁,血管壁と を明瞭に区別して描出できる.しかし通常の方法 では心拍動の影響により、診断価値のある画像を 得るのは困難である.これに対して,最近心電図 同期撮像法が併用されるようになり、心内構造を 明瞭に描出可能となった.この結果,心臓の形態 と動態の両面からの解析が可能となって来た.図 8(a)~(d)に心電図同期による正常心の MR 横断 断層像を示す. 使用装置は日立 G-50 形超伝導 MRI(静磁場強度0.5テスラ)である.心電図の R波をトリガーとし、これから任意時間遅らせて RF パルスを照射し、心周期各時相での像を得る ことができる.図8(a)~(d)はR波からの時間を順 に 20 msec, 70 msec, 120 msec, 170 msec とず らして得た像で、これらから収縮早期から収縮終 期への壁運動の評価が可能である.また,拡張終 期像と収縮終期像を比較することにより,従来心 カテーテル法による左室造影または 99mTc-標識

図8 心電図同期による正常心の MR 像

赤血球を用いた心ループシンチグラフィーでしか 基準化できなかった左心室容積や駆出分画の算出 などを造影剤なしで行なえる^{6~8)}. さらに最近, 高速イメージング法の開発も進み, 1秒間に10~ 20フレームの撮像を可能とする方法も報告され, 心周期内でのリアルタイムイメージングも可能と なってきた⁹⁾. 今後,各種心疾患の診断を始め心 機能や心筋性状の評価などへの有用性が高まるも のと期待される.

3.2 MRS と心機能

NMR のもつ大きな特徴は、従来の分離、抽出、 精製を必要とする生化学的分析法と異なり、非破 壊的かつ連続的測定が可能な点にある. 生体内の 元素で NMR の測定対象となる核種として MRI で用いるプロトン¹H 以外に¹³C,²³Na,³¹P など が挙げられる. なかでも¹H と同様、³¹P の自然 存在比はほぼ100%であり、生体内での含量も高 く比較的測定しやすいこともあり、各種細胞、組 織や灌流臓器におけるリンエネルギー代謝動態の 解析に応用されている10).また最近では、生きた 動物やヒトの局所のリン NMR スペクトルの測 定も行なわれ始めている11). 筆者らもこれまでラ ットの摘出灌流臓器や灌流心臓などを対象に ³¹P-NMR スペクトル測定によるエネルギー代謝 動態の研究を行って来た^{12,13)}。とくに摘出灌流心 標本では、灌流停止や再灌流の操作により虚血と その回復過程における高エネルギーリン酸の代謝 動態が観察できる. SD ラットからの摘出心臓を Langendorff 式により, 95% O₂, 5% CO₂ の混合 ガスで十分酸素化した Krebs-Henseleit 変法液で 100 cmH₂O 圧のもとで灌流, 灌流停止による虚 血および再灌流状態におけるリン酸化合物の経時 的変化を観測した結果を図9に示す.使用装置は 日本電子製 GX-270FT-NMR (静磁場強度6.3テ スラ、リン共鳴周波数 109.25 MHz) で, FID 信 号の積算回数360回により1スペクトル3分で得 た結果である. 各々のピークは左から無機リン (Pi), クレアチンリン酸 (PCr), γ-ATP, α-ATP お

 図 9 ラット摘出灌流心における虚血前後での ³¹P-NMR スペクトル

よび β-ATP である. 灌流停止後 Pi は急速に蓄 積され、6分後には PCr がほぼ消失, また β-ATP はわずかな減少を示している. 再灌流に よって各リン化合物はほぼ灌流停止前のレベルに 回復することがわかる. さらに, PCr のピークを 基準として Pi によるピークとの距離(化学シフ ト)から心筋細胞内の pH を求めることもできる. 図9において PCr ピークからの Pi ピークのシフ トから虚血に伴なう心筋細胞内 pH の低下を知る こともできる. さらに、大動脈圧や左室圧に同期 させた測定により、心周期と心筋内エネルギー動 態の観測結果も報告されている. すなわち, ATP や PCr など高エネルギーリン化合物は収縮期に 減少し、拡張期に増加するのに対して、Pi など 低エネルギーリン化合物は PCr などと逆の周期 的変化を示している14). 筆者らはペーシング法に よる灌流心を用い、心周期とリンエネルギー代謝 動態を観察しているが、ATP と Pi は前記結果 と同様の変動を示すのに対し、PCr は心周期に伴 う一定の傾向はみられなかった¹⁵⁾. 最近1.5~2 テスラの高磁場を用いた人体用 MRI 装置で,体 内局部のスペクトル測定も行なわれ始め,今後エ ネルギー代謝面から心筋症や虚血性心疾患の診 断,病態解明に多くの情報をもたらすことが期待 される.

4. おわりに

最近医学領域での発展と応用が著しい NMR 法について,その基本原理をはじめ NMR 映像 法 (MRI) や NMR スペクトロスコピー (MRS) の原理について解説した.また,心機能の面から MRI と MRS の応用の現状と展望について紹介 した.本法の最大の欠点である撮像時間の長さも 次第に解消され,心臓領域においても今後形態と 機能の両面から幅広い応用が展開されることが期 待される.

終りに,心電図同期心 MR 画像を御提供頂い た日立製作所・藤枝邦美氏に厚くお礼申し上げる.

参考文献

- 1)田中邦雄:NMR による生体計測.臨床検査, 27: 1638-1647, 1983.
- 2) 飯尾正宏: MRI の新しい波. 医学のあゆみ, 142: 1-4, 1987.
- 吉岡 享,今成 司:ライフサイエンスのための NMR. 産業図書,東京, 1982.
- 4)ファラー,ベッカー著(赤坂一之,井元敏明訳): パルスおよびフーリエ変換 NMR. 吉岡書店,京都, 1976.
- 5) 真野 勇: NMR 診断法. 秀潤社, 東京, 1984.
- 6)西村恒彦:心疾患における MRI の有用性. 画像診断, 6:1236-1244, 1986.
- 7)松山正也,渡部恒也,栗林幸夫,大滝 誠,原田積 夫,岩田美郎:後天性心疾患.画像診断,8:265-271,1988.
- 松山正也,渡部恒也,栗林幸夫,大滝 誠,原田積 夫,辻 誠:先天性心疾患.画像診断,8:272-276,1988.
- 9) Chapman, B., Turner, R., Ordidge, R. J., Doyle, M., Cawley, M., Coxon, R., Glover, P. and Mansfield, P.: Real-Time Movie Imaging from a Single Cardiac Cycle by NMR. Mag. Reson. Med., 5:246-254, 1987.
- Gadian, D. G.: Nuclear Magnetic Resonance and its Applications to Living Systems. Oxford Univ. Press, New York 1982.
- Radda, G. K., Oberhaensli, R. D. and Taylor, D. J.: The Biochemistry of Human Diseases as Studied by ³¹P NMR in Man and Animal Models. Ann. N. Y. Acad. Sci., **508**:300–308, 1987.

- 12)田中邦雄,日下部光俊,本田 肇,秋田信之:ペーシング法による灌流心での³¹P-NMR スペクトル 測定の基礎的検討.電気学会計測研究会資料, IM-87-56:31-41, 1987.
- 13)田中邦雄,棟方 隆,菅原 睦,日下部光俊,:³¹P-NMR による腹部臓器エネルギー代謝動態の観察. 電子情報通信学会技術研究報告, MBE88-32: 71-77, 1988.
- 14) Fossel, E. T., Morgan, H. E. and Ingwall, J. S.:

Measurement of changes in high-energy phosphates in the cardiac cycle by using gated ³¹P nuclear magnetic resonance. Proc. Natl. Acad. Sci. USA, 77:3654-3658, 1980.

15)本田 肇,秋田信之,田中邦雄,日下部光俊,小野 寺壮吉:ペーシング法による心拍同期³¹P-NMR 測定の基礎的検討.医用電子と生体工学,第26巻特 別号,2-D-7,1988.