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Abstract

A theoretical investigation was intended to dis-
close the distributions of the axial blood flow veloc-
ity, its spatial rates of changes, the effects of
geometric factor and the torsion of intra myocardial
coronary arterial system which constitution is
characterized by a helical tube model. Mathematical
method was based on the modified orthogonal coor-
dinate system. The modified Navier-Stokes equa-
tions were solved analytically by power series ex-
pansion of the Dean number.

The distribution axial flow velocity skewed later-
ally. The rate of change of axial velocity W in ra-
dial direction on the inner wall surface dW/dr
(r=1) increased in the upper hemisphere and de-
creased in the lower hemisphere. The rate of change
in the W at circumferential direction on the inner
wall surface dW /d 6 (r=1) decreased in the lateral
hemisphere and increased in the inner hemisphere.
The absolutes of the dW/dr (r=1) and dW/d @
(r=1) increased in larger radius, elevated in the ex-
tended state and were larger in 4 times coiling than
2 times coiling.
Key words Intramyocardial coronary artery,
Blood flow velocity, Helical tube,

Shear stress.
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Introduction

Many experimental investigations have been
accumulated concerning about the blood flow in the
coronary artery on the surface of ventricle. The in-
tra myocardial coronary artery, on the other hand,
is helically coiled. Thus, it is difficult to measure
the blood flow velocity and the shear stress in spa-
tial domain. Certainly a simulation study has re-
ported (1) a blood flow velocity profile, it did not
make clear the effects derived in the helical nature
of intra myocardial coronary arterial system.

Present investigation was intended to show the
distributions of axial flow velocity and its rates of
spatial changes in the intra myocardial coronary
artery with the influences of torsion and geometric
factors based on a mathematical modeling of intra-

myocardial coronary artery by a helical tube.
Mathematical method

Present theoretical analysis was based on the
modified orthogonal coordinate system for a helical
tube (2). We set following assumptions for diastolic
coronary arterial blood flow within the myocar-
dium : 1) . The flow is steady ; 2) . The radius of
artery is constant ; and 3). The interactions among
the blood cells and the arterial wall surface do not
exist. Fig 1-a shows the helical tube model of the in-

tra myocardial coronary vessel. The radius of helic-
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al tube is a, the pitch of the helix is b and the dis-
tance from the central axis of the coordinate to the
center of the helical tube is ¢. Fig 1-b is the mod-
ified orthogonal coordinate system of a helical tube.
s’ is the central axis line of the helical tube, T is the
unit tangential vector to s’, N is the normal vector

and B is the rectangular vector to N. Then

dT/ds’=¢N (l-a) dN/ds=7B—«#T (1-b)
dB/ds'=—tN (1-b)

where « =b/(b%2+c2)is the curvature and

Fig 1-a

© =¢/ (b2 + ¢2) is the torsion. An arbitrary point E
on the cross section is expressed by the positional

vector R in the Cartesian coordinate as a function
of (s, 1", 6)

R=Ro(s’) —r'cos (8 + ¢ )N(s’)
+r'sin( 8 + ¢)B(s).

where Ro (s’) is the central positional vector in the
helical tube and r’ is the distance from the point E
to the central point. We introduce following new

vectors for the convenience

Fig 1-b

Fig 1. Modeling of intramyocardial coronary arterial system by a helical tube.

Fig 1-a The schematic illustration of intramyocardial coronary artery by a helical tube. a is the
radius of artery. b is the pitch of helical tube. ¢ is the distance between the center of coordinate
system, which is normal to the tangential surface plane of ventricle, and the center of cross sec-

tional plane of helical tube.

Fig 1-b The circle in the figure is one cross sectional plane in the helical tube. s’ is the center line of
a helical tube. @ is the circumferential angle of the cross sectional plane with O at the outer wall
and 7 at the inner wall. ¢ expresses the initial rotation angle of the helical flow and can be
ignored in a fully developed flow. E is an arbitrary point of the cross section defined by a

Cartesian position vector R.
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ar=sin (8 + ¢) B—cos (0 + ¢) N (2-a)
af=cos (§ +¢)B+sin(d+¢)N (2-b)

where angle ¢ is supplemental circumferential

angle defined as
g
¢ (s')=f 7 (s)dSo
S’o
Then the metric of this system is
dR=ds’(1+xr cos(0+¢))T+drar+rdfald

With the aid of the orthogonal metric, the Navier
Stoke equations for steady flow in the coordinates
s, r’, 0 are

oW oU U 1 oV

was/ 31"+7’+786’

+ & wlcos (0 + ¢)U—sin(0+¢)1V)=0

DW+ & wW(cos(8 + ¢)U—sin(8 + ¢) V]

2 (22

as 7 or o7
U o
+ K wcos (0+¢)W—w%r>+ i, S0
w o
5y swsin (04 9) W-ugy]

V2
DU~ —7 — K wecos (g+¢) we

==+l e+ )

X(La_U_a_V_l)_ L(LW
Y] or 7 vy \ ar

+chos(0+¢)W—-wgg>] """" (5)

Dv+%+stin(0+¢)W2

L2t 4, [,2 [, 27

BRAEX METAER]
w
+stin(0+¢)W—%%)—(aar,

1 oU oV vV

+chos(0+¢)>(78—0—7—7)]

where U, V and W are the velocity components in the
ar, a # and T directions respectively. P is the input
diastolic pressure, ¥ is the kinematic viscosity. w =
1/(1 + xr cos (6 + ¢)) and D is a differential

operator defined as

v
D= wW 2 ra 2

o
as U7t 7 38
Setting new variables as following for the simplicity
of mathematical treatment,

r=r'/a, €E=ak, A=art
u=aU/v,v=aV/v

w=(2x2a3)12W/v D=G a2 (2ka3/v2)1/2/ 1

where G is pressure gradient of input pressure, #
is the viscosity (0.03P). The boundary conditions

are
u=v=w=0

The pressure terms in (5) and (6) are removed by

cross differentiation. Then

o ow

1) a 7 = (] 0 eseses
D« +?(m)+ﬂ%r aa—O (9)
T2y — ow v Jw

w—ug, r 3 a

) o
=—D+/J’?w a;:u ...... (10)
1 o 1 o

2 - _ -

Vi) " u{) ar(MQ) 2 a (vQ))
—w(sma 3 = , cos @ aaz))

L 1eXY) 1 ow OoOu
+‘87( o a T oa 9ga
ow JOv
+ 57 80!) ...... (11)

where  is the dimensionless vorticity for the
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secondary flow. V2 is the differential operator de-
fined as
ov 1 ou

v
A= e Ty "y Blat§)

V2=092/9r2+1/r 0 /0r+1/r202/0 a?
and

a=@0+¢, Bl2=)/(2¢)1
Here we set
0=0 D/A=K!2

EZu, ;Zv, w=Dw /4

where the quantities with bars denote Dean’s vari-
ables and K is the original Dean number defined by
Dean (3) .
equations (9), 10 and (1) are reduced to

By these conversions, the differential

||

aa (m) BEKEy aaa ...... 12

el 2? £ 2?)

=— 44+ BtKty aa;_” ...... 13

vm_(“ aa(r2 + 28)

=Kw (smlx ?9 3 cosra aagv)

+ BFK* (w gf} —Qaa—?)

S Tt
...... (14)

By introducing a modified stream function ¢ to re-

place the continuity equation (19,

_ 1 ow 20 1 [T ow
u—Taa—ﬂszTforaadr

= — a\P. ------
u= ey (19

Present system equations are converted to equation

(16) and (7).

L X
(E;E—ig? 0,7§Ed7> """ (16
Vi = (g r_ aa\I: aaa)vzqr
e Bl (1525
R
J, rgerar— S [l
er 2 k(s 32) 25
- (2w 2 S
3y stk [ s e 5y
ret ) i [ S gn
-%foyr giazdr)
__;32_;) fofr ;fff”sd’] ...... a7

The boundary conditions for these modified dif-

ferential equations are

- oV _ 3
w=0, Y =0,¥=B%K 3

at r=1 T RLTETETTETERE (]&

In a fully developed flow, ¢ is arbitrary and can be
neglected. This system can be solved by expanding
the solutions in the powers of small Dean number K

as

w = w0+ Kwi+K32wa+ Kewa+ K5/ 2w+ ** ¥ *
$=¢0+KP1+K/2g 2+ KEP 3+ K2 g4 *¥k*

Fluid dynamical significance of the parameters.
The Dean number K is equal to the ratio of the

square root of the product of the inertial force and

the centrifugal force to the viscous force. The Dean

number is a measure of the magnitude of the secon-
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dary flow produced by the centrifugal force that
originated from the curvature effect and its interac-
tion to the viscous force. The curvature rate ¢ is a
measure of the effect of geometry and the extent to
which the centrifugal force varies on the cross sec-
tion. The Oth order solution is identical with the
Poiseulli flow (wo =1 - r%), while wn and ¢ n

(n> 1) can be expressed by serial expansions of the
r such that

wl=11(r) cos e, w2 =f2(r) cose + f3(r) sina,
w3 =14(r) + f5(r) cos2 a + f6(r) cosa + f7(r)
sina, $1=g1(r) sina ¢2=g(r) cosa
¢3=g3(r) sin2a + ga(r)cosa + gs(r)sina

We have analyzed the effects of changes in the
radius, the geometric factor & = a/c and the torsion
on the intra myocardial coronary arterial system
by setting
1) the dilatated state (a = 0.1lem: KW1, KW2,
KW3, KW4 in the table 1) and the constricted state
(a=0.04cn: KW5, KW6, KW7, KW8 in the table 1)
of the helical tube,

2) the extended state (c = 7 b: KW1, KW3, KW5,
KW7) and the compressed state (c=4 7 b: KW2,
KW4, KW6, KW8) of the helical tube.

3) The effects of torsion were examined by alter-
nating the number of helical rotations by 2 times
(KW1, KW2, KW5, KW6) and 4 times (KW 3, KW4,
KW7,KW8).

Each case was expressed by the KWn. The
values of the parameters a, b, ¢, 6 (the curvature
ratio=a/c), €, T, £, A, B2 and K were shown
in Table 1. The thickness of ventricular muscle was
set to be 1.5cm. The anatomical relations between
the pitch b and the distance from the center of the
helical tube to the axis of coordinate, ¢, have yet be
known. Thus, we have assumed that the intra
myocardial coronary artery is created in a compact
cubic form within a given volume of ventricular
muscle. Thus the relation 2 * b = 2C was assumed.
Because by the n times rotations, the intra
myocardial vessel reaches to the endocardium from
the epicardial surface of the ventricle, 2 7 b n =
1.5cm. Thus b, ¢ and n were not independent but
are inter related parameters. For the simplicity we

set driving pressure gradient G = 1.0.
Results (Fig 2)

The axial flow velocity W was positive in the en-
tire cross sectional plane of the helical tube. The
maximum of W was attained at § = © /4 and 6 =7

Table 1 System Parameters

alem) b (cm) c(em) ) n

KwW1 0.1 0.1194 0.375 1/3.75 2 c=7rh
KW 2 0.1 0.1194 1.499 1/14.9 2 c=47mh
KW 3 0.1 0.0597 0.1875 1/1.875 4 c=Th
KW 4 0.1 0.0597 0.75 1/7.5 4 c=4mh
KW 5 0.04 0.1194 0.375 1/9.375 2 c=T7Th
KW 6 0.04 0.1194 1.4996 1/37.49 2 c=4mh
KW 7 0.04 0.0597 0.1875 1/4.6875 4 ¢c=T7h
KW 8 0.04 0.0597 0.75 1/18.75 4 c=47h

K T € pl K B
KW1 2.4212 0.7709 0.242 0.07709 0.2037 0.1105
KW 2 0.6626 0.0527 0.06626 0.00527 0.005575 0.0145
KW 3 4.8424 1.5418 0.48424 0.154 0.0407 0.1566
KW 4 1.3249 0.10546 0.1324 0.010546  0.01114 0.0205
KW 5 2.4212 0.7709 0.0968 0.03083 0.0000337 0.0701
KW 6 0.6626 0.05276 0.026505 0.00211 0.00000913  0.00916
KW 7 4.842 1.5418 0.19369 0.0616 0.00006675  0.0991
KW 8 1.3249 0.1054 0.05299 0.004218  0.00001826 0.01295
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Fig 2. Distribution of the axial blood flow velocity (cm/s)in a cross sectional plane and the rates of
spatial changes in axial blood flow velocity dW (cm/s) /dr, dW (cm/s) /d @ on the wall surface
in a cross sectional plane. (all the values were expressed by magnified of 105)

Fig 2-a shows the blood flow velocity in axial direction W (ordinate) with parametric changes in cir-
cumferential angle 6 with 7 /4 step increase. The Fig 2-a indicates the axial flow velocity W in
0< 6 <37 /4 (upper hemisphere) and the Fig 2-b expresses the axial velocity in 7 < 8 <7 7 /4

Fig 2c

(lower hemisphere).

shows the circumferential distribution of rate of change in axial flow velocity W in radial

direction dW/dr (r=1.0). The abscissa is the circumferential angle measure from the outer wall
(8 =0)to the top of the cross section (# =1.57), the inner most wall (@ =3.14), the bottom of
the cross section (@ =3.14) and again the lateral wall (# =6.28). The upper parts of the Fig 2-
¢ are those for larger radius (a=0.1 cm) while the lower part of the Fig 2-d are those for smal-
ler radius (a=0.04 cm) respectively. The dW/dr (r =1.0) indicated by KWn are calculated by
the combination of the parameters given in Table 1. Fig 2-e and Fig 2-e and Fig 2-f show the
rate of change in W in circumferential direction 8 dW/d 8 (r=1.0).
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7 /4 with r =0.24. The distribution of the axial
velocity skewed laterally due to the centrifugal
force.

The rate of change of the W in the radial direc-
tion on the wall surface dW/dr (r = 1.0) (Fig 2-a)
was negative in the lateral hemisphere (0< § < 7
/2 and 37 /2< 6 <27 )while it was positive in the
inner hemisphere (7 /2< 6 <3 7 /2). The dW /dr
(r =1.0) increased for 0< @ < 7 and turned to be
positive value at the top (8 = 1.57: 7 /2) of the
cross sectional plane. In the lower hemisphere, The
dW/dr (r = 1.0) decreased for # < § <2 7 and
turned to be negative value at the bottom of the
cross section (@ =4.71:37 /2).

The change of the W along the circumferential
direction on the inner wall surface dW/d 6 (r =
1.0) (Fig 3-b) was negative in the upper hemisphere
(0< @ < m), while it was positive in the lower
hemisphere. In the upper part of the lateral hemis-
phere (0< 6 < 7 /2) , the dW/d 6 (r = 1.0) de-
creased. The most potent deceleration occurred at
the top of the cross sectional plane (# = 7 /2) . In
the inner hemisphere, the dW/d 6 (r = 1.0) in-
creased for © /2< § <3 ™ /2 which turned to be
positive value at @ = 7,

The absolutes of the dW /dr (r = 1) and dW/d 8
(r = 1) increased in a larger radius (a = 0.1cm) than
in a smaller radius (a = 0.04cm) (KW1>KW5, KW2
>KW6, KW3>KW?7 and KW4 > KWS8) . They in-
creased in the extended state than in the compress-
ed state (KW1>KW2, KW3 > KW4. KW5> KW6
and KW7 > KW8) . They marked larger values in
large number of helical coiling (n = 4) than in the
small number (n = 2) (KW3>KWI1, KW4 > KW2,
KW7>KW5 and KW8>KW6).

Discussion

Present theoretical study analyzed the distribu-
tion patterns of the axial blood flow velocity in the
intramyocardial coronary artery and its rates of
spatial changes. We have shown constitutional
properties of intramyocardial artery consisting
helical rotation by the effects of geometric factor
and torsion of helically coiled tube.

For the simplicity of theoretical treatment, the
organization of the helical tube was assumed to be a
cubic one. In actual coronary system, however,
many other factors includig bifurcation must mod-
ify the numbr of helix. In such situation, present
theory has to be modified to be a more complicated
one. In the present study, the wall of the intra
myocardial artery was assumed to be rigid
although in actual system, the wall properties are
determined by the interaction between the elastic
factor of the intra myocadium and the tension of the
wall. To incorporate these constitutional factors
makes the problem too complicated to solve. More
over, the physical analysis of a curved elastic tube
has been started only recently and we can find any
sufficient comparable theoretical study. Thus these
wall properties should be taken into consideration
in our future work.

Present results showed that at a given number of
helical coiling, the rates of spatial changes in the
axial flow velocity on the inner wall surface,
dW/dr (r =1.0),dW/d 8 (r = 1.0) were larger in
the extended state (larger curvature ratio &) repre-
sented by the KW1, KW3, KW5 and KW7 than in
the compressed state KW2, KW4, KW6, KWS.
According to the experimental reports in a curved
pipe, the mean vorticity (4) increased in a larger &
(=1/4.66)than in a smaller & (= 1/8.00). The cir-
cumferential wall shear stress (5) was augmented in
a larger 6 (= 1/7) than in a smaller & (= 1/20) .
The wall shear stress (6) was enhanced in a larger
& (=1/3)than in a smaller & (=1/7). Thus present
ifluences due to change in the geometric factor ( &)
were consistent to the experimental data and the
geometric factor plays important roles even in a
helical tube at a small Dean number.

The effects of the torsion was quantified by the
rotation number n of the helical tube of the intramy-
ocardial coronary arterial system. The rates of spa-
tial change in the axial flow velocity on the inner
wall surface increased more by the 4 times helical
rotations than by the 2 times coiling (n = 2) . More
over, large values of 8172 (the rate of curvature to

torsion) resulted in larger values of the rates of
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spatial change in the flow velocity (KW3, KW4,
KW7, KW8) than smaller #1/2 (KW1, KW2, KW5,
KW6) . Thus present data showed that even under
small Dean number, the secondary flow is influ-
enced by the torsion. Soh (5), by numerical calcula-
tion showed that the circumferential wall shear is
enhanced by a larger Dean number than by a smal-
ler Dean number. Bovendeerd (7) reported that the
mean vorticity is stronger for a larger Dean number
than for a smaller one. Those experimental data are
consistent to our data. Therefore at least in the
qualitative aspects, our results relevant to the
effects of the torsion were consistent to those ex-
perimental and theoretical results.

There has been little number of paper that refer-
red to the spatial distribution in shear stress at
small Dean number. For fully developed flow (8) in
a circular tube at Dean number = 0.7559, the axial
shear stress marked higher value at the inner wall
than at the outer wall. This result is consistent to
the distribution of the dW/dr (r = 1.0) in the pre-
sent study.

Conclusion

The rates of spatial distribution changes in the

radial and the circumferential directions of the

axial blood flow velocity in helical model of the
intramyocardial artery with the maximum Dean
number below 1.0 showed characteristic patterns.
They increased with the radius, in the extended
state of the helical tube and with the number of
helical coiling. Present results are available to
speculate the distribution of the shear stress by
the axial blood flow in the intramyocardial coron-
ary artery and analyze the disturbance of coron-

ary blood flow in the ischemic heart disease.
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