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Abstract

Engineering linear systems analysis was applied for
cardiovascular system to evaluate an entire systemic
properties of the system. The cardiovascular system
was expressed by an equivalent electrical circuit
comprised of systemic, pulmonary circulations includ-
ing arterial and venous systems. Linear systems
analysis disclosed that the cardiovascular system was
stable but uncontrollable. The singular values elevated
at low frequency range but was reduced significantly
by optimized feed back that minimized the perfor-
mance function involving the squares of deviations of
the target pressures and consumption of control inputs.
Present investigation must afford some insights to
disclose the characteristic properties of cardiovascular
system.

Key Words : Cardiovascular system, Electrical
circuit, Linear systems analysis, Optimization.

Introduction

Predicting and evaluating an entire property of
circulatory system are particularly important for
Anesthesia. Biological experiments'?, however, have
been performed only to characterize hemodynamical
and mechanical aspects of circulatory system. Such
efforts could not disclose any total associated feature
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of circulation as a system such as stability and
controllability of cardiovascular system as a whole.

In the present study, we propose an engineering
method®® to evaluate the entire behavior of car-
diovascular system. We introduce an equivalent elec-
trical circuit model® for an entire cardiovascular
system including venous system. Applying linear
systems analysis, we evaluate stability, controllability
and singular values of the cardiovascular system. We
show that the cardiovascular system is stable but
uncontrollable in engineering sense and show how the
system optimization alters the circulatory state.

Method

Mathematical modeling

Fig 1-a shows a schematic illustration of total
cardiovascular system (5). It is composed of pul-
monary circulation, systemic circulation including
abdominal, renal circulation and of venous system. Fig
1-b shows an equivalent electrical circuit model® of
Fig 1-a. Blood flow in each segment was expressed by
pressure Pn and flow fn. Viscous fluid resistance was
expressed by resistance R mmHg sec/ml. For the
simplicity, we associated the valvular resistance with
fluid resistance. Compliance of vessel wall was repre-
sented by capacitance C ml/mmHg. Inertial force on
the blood is distinct only at near the ventricle and we
set inertance L mmHg sec’’ml only at aorta and
pulmonary artery. We also set the resistance between
the right and left atriums for atrial septum defect and
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Fig 1-a Head and Amms
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Fig.1 Modeling of the cardiovascular system®.

Fig 1-b

Figl-a. Schematic illustration of the total cardiovascular system. Fig 1-b. An equivalent electrical circuit of Fig 1-a.

the resistance between the ventricles for ventricular
septum defect. Abbreviations of Fig 1-b are listed in
Table 1. Pressure (Pn)- flow (fn) relations of viscous
fluid in a cylindrical segment can be approximated by
the Ohmic law

fn(t)—fn+1(t)=CndPn/dt ........................ (])
Pu(t)—Pn+1(t)=
Lo+1dfo+1(t)/dt+Rn+1fa+1(t) «=oeeeeeeees 2)

PO(t) and P4(t) were set as controlling inputs generat-
ed in right ventricle and left ventricle. The differential

equations for pressures were

dP1(t)/ dt=(f1() — f2(t))/ C1 +erevreerenrensuoencenns 3)
dP2(t)/ dt=(£2(t) — £3(t))/ C2 +++rrevrrrsesennnneennns )
dP3(t)/ dt=(f3(t) —f4(t))/ C3 ==-vecerrrermnemrenranee 5)
dP5(t)/ dt=(£5(t) — f6(1))/ C5 +vreverrrrernserrnucens ©)
dPe(t)/ dt=(f6(t) —f11(t) —£7(t))/ CO +vvrrenrenreene ™)
dP7(t)/dt=(£7(t) — f8(t) —f13(1))/ CT cverrevevereees (€3]
dP8(t)/dt=(f8 (£) —fo(t))/ C8 =+++eererrrormsruseasanss (©)
dPo(t)/dt = (fo(t) —f1o(t) +f12(t) +f13(t))/ C9  --+(10)
dPio(t)/dt=(f10(t) —f0(t))/ C10-++-=srvrrrereenenaes (11)

Table1 abbreviations for Fig 1-b.

1. Segmental flows

f0 : flow from right atrium to right ventricle.

f1 : flow from right ventricle to pulmonary artery through
pulmonary arterial valve.

f2 : flow at pulmonary capillary.

3 : flow in pulmonary vein.

4 : flow from left atrium to left ventricle.

f5 : aortic flow.

6 : flow from descending aorta to abdominal aorta.

f7 : flow at femoral artery.

8 : flow at systemic capillary artery.

9 : flow at peripheral venous.

f10 : flow at vena cava.

f11 : flow into kidney.

12 : flow at venous side of abdominal organs.

13 : flow branched from femoral artery perfusing low limbs.

2. Segmental pressures
PO : Right ventricular pressure.
P1 : Pulmonary arterial pressure.
P2 : Pulmonary capillary pressure.
P3 : Pulmonary vein pressure.
P4 : Left ventricular pressure.
P5 : Aortic pressure.
P6 : Abdominal arterial pressure.
P7 : Femoral arterial pressure.
P8 : Capirally arterial pressure in systemic circulation.
P9 : Venous pressure at systemic circulation.
P10 : Pressure of right atrium.
P11 : Renal arterial pressure.
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Table 2 The system parameters.

Resistance (mmHg/ml sec)

Capacitance (ml/mmHg)

Inertance (mmHg/ml sec?)

RO = 0.1 R7=1.5 Cco=2 C7 =025 L2 =0.01
R1 = 0.1 R8 = 2.75 Cl1 =03 C8 = 0.1 L6 = 0.05
R2 =05 R9 = 0.5 C2=03 C9 =02 L7 =0.02
R3 = 0.5 R10 = 0.1 C3=1.0 C10 = 0.1
R4 = 0.1 R11 = 0.5 C4 =50 Cl1 =0.1
R5 =0.1 R12 =05 C5=1.0
R6 = 1.0 R13 =0.5 C6 =0.5
RASD = 100
RVSD = 100
dP11(t)/dt=(f11(t) —£12(t))/ C11 =ervevereevenceens 12) —1 and @ is angular velocity), we can compute

Equations for flow are given in Appendix 1. The
standard values® of Rn, Cn and Ln were shown in
Table 2.

Linear systems analysis

The relations between the pressure and flow are
expressed by the Ohmic law. They are given in
APPENDIX I. Substituting these equations to the right
sides of the equations of the pressures (3) to (12), we
can have differential equations only for the pressures®.
These system equations are expressed in a vector form

X' =AX+BU, Y (X s e s s s s (13)

where X is a matrix of the state variables for pressures
Pn(t)®. A is a matrix that characterizes intrinsic
properties of the system which elements are functions
of Rn, Cn and Ln. B is a matrix for the control inputs
U of the system dedicated from PO(t) and P4(t). C is a
matrix for the out puts Y of the system. For the
simplicity, we set C unity. Since the circulatory
system is a closed system, we can obtain a Laplace
transformed transfer function G(s) (where s is Laplace
operator)® of the system by computer approach though
the functional form is too complicated to show.

The stability of the system was evaluated by the
eigen values of the characteristic equations®. A brief
sketch for obtaining the characteristic equations and
eigen value by using the state transition function is
given in APPENDIX II. By setting s=j » (where j>=

frequency character of the transfer function G(s). We
show a method of Bode plot to evaluate the frequency
dependency of the transfer function G(s) of the present
system. We show gains dB® of the present system by
computing the absolute value of G(s) and phases
degree® by computing Z/G (j w) as functions of fre-
quency (rad/sec).

We evaluated the system performance of co-
ntrollability from the stand point of control engineer-
ing. The rigorous definition of the controllability is
"The state x(t) is controllable at t=to when the state
can be transferred to any final state x(tr) for a finite time
interval (tr—to) by a continuous input u(t)">7®.

The controllability>® of the system was judged by
the rank of matrix. Precise mathematical process
should be referred to Engineering text books*”® and
we give the necessary conditions for the controllability
in Appendix III. The number of uncontrollable vari-
ables are calculated>”® by

length (A) —rank (Co) where
Co=[B AB A2B AB Ar! Bl:n=13--"-e-eo (14)

We can conclude that the system is controllable
only if there was no uncontrollable variable other
wise, we judge the system uncontrollable®’®,

The singular values dB of the system® for a measure
of functional space of the system

Clow I—A)TIB  ceevreeeremneennenniiininiiiinne, (15)
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was calculated as a function of frequency (rad / sec).
The criterion of the optimality” in engineering sense
of the cardiovascular system was expressed by the

performance function*”

t

J={[XQX+URU]dt ........................... (16)

where Q and R are weighting matrixes for X and for U
respectively. The optimal feed back is given by U=
—KX where K is the optimal feed back gain that
minimizes the performance function. This feed back
law implies that PO(t) and P4(t) that are set as
controlling inputs U are fed by the venous return
which produces finite pressure X. The significance of
the performance function has been discussed in our
previous work!?,

Results

1. The stability and controllability of the system.

All the real parts of eigen values (Table 3) of the
system were negative and insensitive to 100 fold
changes in Rn, Cn and Ln. Thus, the system was
judged to be stable. Fig 2 shows typical examples of
the Bode plot exhibition of the system. Fig 2-a is those
of Pulmonary venous pressure and Fig 2-b is those of
pulmonary capillary flow. In both cases the Gains (dB)
are negative at the cross over frequency 180 deg
(denoted by vertical bars on the phases. They show
frequency character of stability of these segments. By
the matrix calculation, the system was judged to be

Fig. 2-a
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Fig.2 Bode plot of cardiovascular system.

uncontrollable. There were 7 uncontrollable variables
in the system which were insensitive to regulation of
the system parameters. Thus, we concluded that the
cardiovascular system was uncontrollable in purely

engineering definition?.

2. The singular values with optimized feed back.

Fig 3 shows the singular vales of the system when
the system was not supplied the optimized input (Fig
3-a) and those when the system was fed back with the
optimized feed back (Fig 3-b) that minimized the
performance function. The singular values were de-
pressed considerably when the feed back was optimiz-
ed.

Table 3 EigenValues and damping

Eigenvalue Damping Freq. (rad/s)
—3.35e+00 1.00e+00 3.35e+00
—1.02e+01 1.00e+00 1.02e+01
—1.58e+01 1.00e+00 1.58e+01
—2.02e+01 1.00e+00 2.02e+01
—3.56e+01 1.00e+00 3.56e+01
—5.84e+01+5.38¢+01i 7.36e—01 7.94e+01
—5.84e+01—5.38e+01i 7.36e—01 7.94e+01
—6.16e+01 1.00e+00 6.16e+01
—6.97e+01 1.00e+00 6.97e+01
—9.74e+01 1.00e+00 9.74e+01
—1.32e+02 1.00e+00 1.32e+02
—2.33e+02 1.00e+00 2.33e+02
—3.22e+02 1.00e+00 3.22e+02
Fig. 2-b
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Fig 2-a is bode plots of Pulmonary venous pressure and Fig 2-b is those of Pulmonary capillary flow.

Upper is gain (dB) and lower is phase (deg).

Presented by Medical*Online



Linear Systems Analysis of Cardiovascular System Expressed by an Equivalent Electrical Circuit Model. 167

Fig. 3-a
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Fig. 3 The singular vales of the system.

Fig. 3-b
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when the system was not supplied by the optimized input (Fig 3-a) and when the system was supplied
by the optimal feed back which is given by U = —K X where K is the optimal feed back gain that
minimizes the performance function. equation (16).

Discussion

To evaluate an entire property of cardiovascular
system, we introduced engineering linear system ana-
lysis with the help of modeling the system by an
equivalent electrical circuit. The cardiovascular system
was computed to be stable but uncontrollable. We
introduced the singular values so as to measure the
functional space of the cardiovascular system. System
optimization reduced the singular values significantly.
The present method will be available for evaluating
the associated features of the cardiovascular system.

Some assumptions were required for modeling the
cardiovascular system. An electrical circuit modeling
requires the validity of applying the Ohmic law for
pressure flow relations. This can be seen by successful
simulation of pressure curves by similar electrical
circuit model'?. All the biological systems are non
linear and applying the linear systems analysis re-
quires simplification of the biological properties of the
system. The present approach is available only for the
time invariant, linear system. The physiological per-
formances of the biological systems, however, are
almost within a linear range with a little deviation
from the normal physiological range!®. Inherent non
linearity of the system can be conquested by dividing
each segment piese wisely in detail'”. Non linear
modeling of the system, although it can describe
minuet structural properties of the system, will be too
complicated to construct and can not be available for

actual clinical using. Exogenous control inputs such as
autonomic nervous system or humoral factors can be
represented by adding more inputs Un on the system
equations.

Actual biological cardiovascular systems involve
many other factors such as humoral control and auto
regulation of arterial beds. These factors concern on
the regulation on molecular level and on local circula-
tion. The present investigation can not describe such
minute mechanisms, however referred to characterize
entire and integrated properties of the system but did
not consider these elemental contributions. More
precise and complicated mathematical treatment
should be required to incorporate such elemental
factors.

We introduced engineering criterions so as to intro-
duce a computer linked on-line evaluation system to
human cardiovascular system in actual clinical circum-
stance. The stability of the cardiovascular system is
consistent with the physiological reaction of the
system against the exogenous disturbance so as to
return to the steady stable blood pressure. Among
what we have introduced, particularly the un-
controllability of the system may evoke criticism. This
conclusion, however derives in purely engineering
sense. Rigorously, engineering controllability means
that the system can be transferred to any arbitrary state
within a finite time>”®. Actually, it is clear that human
cardiovascular system can not be transferred to any

arbitrary state. Thus uncontrollability of the car-
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diovascular system in not inconsistent to its physio-
logical operation where the pressure and flow are
maintained within the physiological range.

The singular value of the system is an extension of
Bode plot to multiple input multiple output system.
Reduction of the singular value by the optimization of
the system indicates that the singular value is a
measure effective functional performance of the car-
diovascular system. Criterion of the system optimiza-
tion is yet unsettled problem. We introduced the
present performance function because it is the standard
form®* and can describe the physiological state where
the system is organized to minimize the disturbances
of the system.

We only introduced a method to evaluate entire
properties of the cardiovascular system by an on line
computational system that should be linked to Anest-
hesia. Further improvement of the present method will
be required for clinical application.

Conclusion

Cardiovascular system is stable but uncontrollable.
Optimized feed back that minimizes the deviations
from the physiological state reduces the singular
values. Linear systems analysis is available for eva-
luating entire properties of the cardiovascular system.
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Appendix I. The equations and differential equations
for flow rates are

fo(t)= (P10(t) — Po(t))/ RO

f1(t)=(Po(t) —P1(t))/ R1

df2(t)/ dt=(P1(t)—P2(t) —R2 f2(t))/ L2
f3(t)=(P2(t)—P3(t))/ R3

fa(t) = (P3(t)—P4(t))/ R4

f5(t) = (P4(t)—P5(t))/ RS

d fe(t)/ dt=(Ps(t) — Ps(t) —R6 fo(t))/ L6
d f7(t)/ dt=(Ps(t)—P7(t) —R7 f1(t))/ L7
f8(t)=(P7(t)—Ps(t))/ R8

fo(t)=(Ps(t) —Po(t))/ R9

fio(t)=(Po(t) —P10(t))/ R10
fl1(t)=(Pes(t) —P11(t))/ R11
fi2(t)=(P11(t)—Po(t))/ R12
f13(t)=(P7(t) —Po(t))/ R13

Appendix II. Laplace transform of the system and its
characteristic equation by the state tran-
sition matrix ¢ (t) of the system.

The state transition matrix is defined as a matrix
that satisfies the linear homogeneous state equation

X(£) = A X(£) rvvereerererrnnsnenencniiiiiiennn 1)

Let ¢ (t) be an n and n matrix that represents the state
transition matrix. then it must satisfy the equation

GUY=AG(L) wrrevrerresrmsenmseneniiininens 2)

Let X(0) denote the transient state of the system at t=
0 ; then ¢ (1) is also defined by the matrix equation

X()= ¢ (€) X(0)eeererreerersussnssussunnsunns 3)

which is the solution of the homogeneous state
equation for t > 0. Taking the Laplace integral
transformation on both sides of Eq (3), we have
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S X(S) —X(O):A X(S) ........................ (4)
where s is the Laplace operator. Solving for X(s)
X(8)=(s I—A)! X(0)rerereerorererennenancannes 5)

Taking the inverse Laplace transform L ' on both
sides of the Eq(5)

X(t)=L -1 [ (S I—A)'l ] X(O) .................. (6)

Comparing to Eq(3) with Eq(6), the state transition
matrix is identified to be

¢(t)=L" [(ST—A)Y'] crereereemereennennn )

where sI - A is the characteristic equation and its roots
are the eigen values of the system.

Appendix III. The necessary condition for the co-
ntrollability.

When the system is controllable in which the system
can be transfered from any arbitrary state x(0) to any
desired state x(tf) within a finite time duration tf. Then,
by utilyzing the state transition function ¢ (t)=exp (A
t), we have

x()=eA'x(0)+ {eA('_')B u(z)dz

For an arbitrary x(0), there is an inputu(z),0<r <t
and following relation can be hold.

0= x(O)+ [eAC O Bu(r)dr

:eA‘[X(O)‘Fie'A’Bu(r)dr]ZO

Since e A'is non singular matrix , contents within [ ]=
0.

x0)=—[e?A*"Bu(r)dr
0
Because e A ! is atransition matrix, it is expanded as
00 . .
eA'=I+ At+ A?t?/2!1+ * * **=3F Alti/]!
i=0

By the theorem of Kaley Hamilton®, above e ! can be
expanded by finite series

n—1
=qo®) I+ a 1(t) A+*** @ n-1(t) A™ = g‘,oa/ i(t) Al
Therefore, substituting this series to e A*

xO=—Je *Bu(r)dc =3 [A'B]ai(r)
u(z)dr ]

Uo
=[BABA2BA3BA““1B] [ 11:1 ]
U,

Here

ui=— { ai(z)u(z)dr
To hold above expression for an arbitrary x(0),it is
evident that there should be n independent factors in
the matrix

Q=[BABA’BA’BA"!B]

Therefore rank Q=n.

(Circ Cont 20 : 163~169, 1999)

Presented by Medical*Online



	0163
	0164
	0165
	0166
	0167
	0168
	0169



