シロリムス溶出性ステントを用いた冠動脈疾患のカテーテル治療

木 村 剛＊

はじめに

冠動脈疾患の経皮的カテーテル治療（PCI）が臨床導入されて，既に 25 年が経過した。操作性の悪 い On－the－wire のバルーンでスタートした PCI で あるが，その後のガイドカテーテルやバルーンカ テーテルの改良，冠動脈ステントの開発とその洗練，Thienopyridine 系の抗血小板剤の導入など， いくつかのブレークスルーを経て，PCI は冠動脈疾患における血行再建療法の中心的役割を担うに至った。解決困難な問題と考えられていた再狭窄 も薬剤溶出性ステントの開発によって，解決の方向に大きく前進しようとしている。本稿では，薬剤溶出性ステント，特に，現在日本において使用可能な Sirolimus 溶出性ステント（CYPHER ステン ト）に関する，最近の話題を紹介し，その有効性と潜在的問題点について考察し，冠動脈疾患のカテ ーテル治療の今後を展望したい。

シロリムスによる再狭窄抑制

全身性の薬物投与による再狭窄予防の試みが悉 く不成功に終わった最大の理由は薬剤の十分な局所濃度が得られていないことであり，薬剤あるい は遺伝子の局所注入（local drug delivery）が再狭窄克服のための最も有望な方法論であろうと，多く の研究者は考えていた。現在のPCIの中心はステ ントであり，ステント再狭窄の原因は新生内膜増殖であることから，新生内膜増殖抑制作用を有す る薬剤をステントに結合させるという，ステント をベースにした local drug delivery が研究の中心と なっている．しかしながら金属性ステントに薬剤を

[^0]結合させることは容易ではなく，たとえ結合させ ることができたにしても，表面積が小さいため薬剤の量は十分でないことが多かった。そこで十分 な量の薬剤を結合させるためステントをポリマー でコーティングする方法が模索された。当初実験的に使用されたポリマーは炎症反応を惹起し，か えって内膜増殖を増強させるという結果であった。最近になってメタクリレート，ポリアミド，ヒド ロゲルなどの生体適合性のあるポリマーが開発さ れた。種々の薬剤を含有したポリマーをステント にコーティングすることにより，種々の薬剤溶出性ステントの研究開発が進められている。テスト されている薬剤としてはシロリムスをはじめとす るライムス系の薬剤やパクリタキセルなどが挙げ られる。

シロリムスは抗真菌作用を持つ抗生物質として発見されたが，その免疫抑制作用のため抗生物質 としての開発は中止された。しかしながら移植医療の進歩により，その強力な免疫抑制作用が注目 され，FDAにより腎移植の際の拒絶反応予防のた めの免疫抑制剤として承認された。スタンフォー ド大学のグループは免疫抑制剤としての実験にお いて，シロリムスを投与されたラットの移植心で は冠動脈に通常みられる内膜増殖が認められない ことを発見した．移植心の内膜増殖と再狭窄とは その発生機序が異なることは勿論であるが，その組織学的類似性から，彼らはラットの頸動脈バル ーン傷害モデルでシロリムスの投与を試み，内膜増殖の抑制を示した。マウントサイナイのグルー プはブタの冠動脈のステント再狭窄モデルでシロ リムスの全身投与により内膜増殖を 52% 抑制する ことに成功した。これらの有望な実験結果をうけ て，Johnson and Johnson 社はシロリムスをBX－

Velocity ステントにコーティングした CYPHER ス テントの作成に成功した。ステントはベースコー トとトップコートと呼ばれる 2 層のポリマーによ り被覆されている。使用されたポリマーは poly－n－ butyl methacrylate と polyethylene－vinyl acetate の コポリマーである．ベースコートはステントあた り $185 \mu \mathrm{~g}$ のシロリムスを含有するポリマーであり， トップコートは薬剤の放出速度を調節する拡散障壁として機能する． 15 日以内に薬剤を放出する fast release formulationと 28 日以上かけて薬剤を放出する slow release formulationの 2 種類が作成さ れたが，現在臨床において使用されているのは slow release formulationである。 72 時間後の薬剤濃度は組織で $97 \pm 13 \mathrm{ng} /$ artery と高く保たれている のに対し，血中では $0.4 \mathrm{ng} / \mathrm{ml}$ 未満と微々たるもの で全身性の毒性についての懸念はないようである。
シロリムスによる血管平滑筋細胞増殖抑制の作用機序は以下のように考えられている。腫瘍抑制蛋白である Retinoblastoma protein（ pRb ）は血管平滑筋細胞増殖の最も重要な調節因子として知られて いる．cyclin／cyclin－dependent kinase 複合体による pRb のリン酸化による pRb の不活性化がセルサイ クルを進行させ，G1 からS への移行をもたらす。 シロリムスは細胞内の受容体である FKBP12 と結合し，cyclin／cyclin－dependent kinase のインヒビタ ー（CDKI）のひとつである p27を upregulate し cyclin／cyclin－dependent kinase 複合体による pRb の リン酸化を抑制し，後期 G1 phase での細胞周期停止をもたらす。シロリムスはまた血管平滑筋細胞 の遊走も抑制することが知られている。鈴木らは ブタの冠動脈モデルで CYPHER ${ }^{T M}$ を用いて，ステ ント留置後の新生内膜增殖抑制により 28 日後の狭窄度の 50% 減少を報告した。

臨床に定着する薬剤溶出性ステント

これらの有望な動物実験データを受けてRAVEL試験，SIRIUS試験，New SIRIUS試験などの CYPHER ステントとベアメタルステントの大規模無作為比較試験で，CYPHER ステントはおしなべ て，造影上の再狭窄率 10% 以下，臨床的再狭窄（標的病変再血行再建：TLR）5\％以下，相対的再狭窄低下率 70% という驚くべき再狭窄抑制効果を示し た。これらの試験において対象となった病変はか

なり限られた病変であり，より複雑な病変におい ても同様の再狭窄抑制効果を示すことができるの かが問題であるとされていた。しかしながら最近 の報告では，再狭窄病変，び漫性病変，慢性完全閉塞病変，分岐部病変など大規模試験で除外され ていた複雑病変を多く含む，現実臨床のレジスト リーにおいても，同様の再狭窄抑制効果が示され ている．ヨーロッパ，ラテンアメリカ，アジア， オセアニアの 15000 例規模のレジストリーである e－CYPHER Registry の 1000 例の 1 年追跡の報告で は，TLRを含む有害事象の頻度は，SIRIUS試験， New SIRIUS 試験などの大規模試験における成績と ほぼ同様であった。

また最大の懸念であったステント血栓症も，少 なくとも短期的には 4 つの大規模無作為比較試験 （ $\mathrm{N}=878$ ）で 0.6% ，e－CYPHER Registry で 0.9% と低率であった。これらの結果を受けて2004年10月 18 日 FDA は，承認された範囲内の適応で適切 な抗血小板療法併用の基に使用されれば， CYPHER ステントはベアーメタルステントに比べ てステント血栓症の頻度が高いとは言えないとい う声明を発表した。
このような流れの中で，米国では2004年の PCI におけるステントの使用頻度は 95% であり，その うち薬剤溶出性ステントのシェアは 85% と，薬剤溶出性ステントはしっかりと臨床の現場に定着し ていることが窺える。

日本においても発売後3ヶ月の時点で CYPHER ステントのマーケットシェアは使用本数ベースで約 60% と推定され， 2004 年 10 月 14 日までに 18635 本の CYPHER ステントが使用されている。
日本においては欧米における標準的抗血小板薬 Clopidogrel が使用できず，やや副作用の頻度が高 いとされる Ticlopidine を使用することになるが，副作用で Ticlopidine を中止せざるを得なくなった場合にステント血栓症の発症が懸念されていた。 しかしながら，この時点で企業に報告されたステ ント血栓症は 23 例であり， 1 人当たり 1.5 本使用 されたとしてステント血栓症の頻度は 0.2% と推定 される．勿論，CYPHER ステントの実使用患者数 が不明であり，またすべてのステント血栓症が企業に報告されているわけではないので，実際の頻度はもう少し高い可能性が強いが，これまでのと

ころ日本における CYPHER ステントの導入は順調 にスタートしたと言える。

薬剤溶出性ステントによりステント再狭窄は撲滅されたか？

薬剤溶出性ステントによる再狭窄抑制に関して，残った問題としては，実際の臨床の場で，しばし ば遭遇する極端なび漫性病変で末梢 run－off の悪い病変においても再狭窄抑制効果が保たれるのかが指摘できる。このような病変も現在までの報告の中に含まれているのかもしれないが，日本におい ては，欧米に比べて，このような極端なび漫性病変にもPCIが試みられることが多い。こうした病変における薬剤溶出性ステントの有効性について は日本から情報発信すべきであり，また自分の経験で効果を実感することも重要であろう。

明確な再狭窄抑制効果を示している薬剤溶出性 ステントであるが，再狭窄率はゼロではない。 CYPHER ステント留置後の再狭窄率をさらに低下 させるための試みも行われている。糖尿病は CYPHER ステント留置後の再狭窄のハイリスク群 でもあることが示されているが，このハイリスク群における再狭窄率低下を目的として，3D 試験に おいてダブルドーズの Sirolimus がテストされたが，内膜増殖抑制効果は通常量の Sirolimus 溶出性ステ ントと差がなく，本試験では薬剤量の増加による再狭窄抑制効果は認められなかった。現在のとこ ろ，CYPHER ステント留置後の再狭窄率をさらに低下させるための方向性は明確になっていない。

また CYPHER ステントの再狭窄はび漫性ではな く限局性の再狭窄が多いとされている。ベアメタ ルステントの場合，限局性再狭窄はび漫性再狭窄 に比べて，再度の PCI 後の再発のリスクが少なく，良性の再狭窄と認識されてきた。しかしながら Lemos らの 27 病変の CYPHER ステントの再狭窄 の報告では，限局性再狭窄の頻度は 71%（多発性限局性再狭窄 19% を含む）と限局性再狭窄の頻度が高 いことは従来の報告通りであったが，再度の PCI （多くは再度の薬剤溶出性ステントの留置）後の再々狭窄率は 43% と決して低くはなかった。 CYPHER ステントの再狭窄が難治性になるのかど うか，今後の多数例での検討が必要である。

また長期的な再狭窄抑制効果の維持については，

CYPHER ステントで 4 年まで，TAXUS ステント では2年まで有効性が維持されていると報告され ている。しかしながら冠動脈内放射線治療では治療後 $3 \sim 4$ 年で再狭窄の増加が見られた（Late catch－up）との報告もあり，長期成績については今後の経過を慎重に観察する必要がある。

以上のような問題を残してはいるが，ごく一部 の患者でTLRが必要とされ，それもさらに $1 \sim 2$回のカテーテル治療でほとんどの病変の開存が得 られるとすれば，臨床的には再狭窄の問題はかな り解決に近づいたとは言えよう。

薬剤溶出性ステントについての潜在的な懸念

TAXUS ステントの 2 年の追跡結果に関して気に なったことは，TAXUS－2 で 3 例，TAXUS－4 で 3例の患者に $1 \sim 2$ 年の時期にステント血栓症が発症 しており，コントロール群においてはステント血栓症の発症は見られなかった点である． 2 年の時点でのステント血栓症の頻度は，TAXUS ステント群 1.5% ，コントロール群 0.6% と，統計学的有意差はなかったようであり，問題ないのかもしれな いが，30日以降のステント血栓症の頻度は， TAXUS ステント群 1.2% ，コントロール群 0.1% と， TAXUS ステント群でステント血栓症の発生頻度が高い印象を受ける。我々のベアーメタルステント の経験でも，この時期にステント血栓症の発症を みることはきわめて稀であり，今後の報告に注意 すべきであると考えている。

一方，現在日本において使用可能な薬剤溶出性 ステントである，CYPHER ステントについては， RAVEL 試験，SIRIUS 試験，New SIRIUS 試験の 2年の追跡結果が明らかにされているが，そのメタ アナリシスでは遠隔期ステント血栓症（Late throm－ bosis）の頻度は CYPHER 群 0.3% ，コントロール群 0.5% と全く差がないとする，一応は安心できる結果が報告されている。

しかしながら，最近，薬剤溶出性ステント留置後1年前後の時期に，抗血小板療法の中止に伴っ て 4 例のステント血栓症の発症が Lancet 誌に報告 された。内訳は TAXUS ステント 2 例，CYPHER ステント 2 例で， 3 例は非心臓手術の術後であっ た。 Late thrombosis の頻度を推定するための母集団の症例数が不明であり，現時点で薬剤溶出性ス

テント留置後の Late thrombosis の頻度がベアーメ タルステントに比較して高いという確固たる証拠 はないが，薬剤溶出性ステントにおける内皮細胞再生の遅延に伴う易血栓形成性を示唆している可能性もある。薬剤溶出性ステント留置後長期に亘 って，抗血小板療法中止後に Late thrombosis を発症する可能性が高いとすれば，薬剤溶出性ステン トの死活問題である。
今後の課題としては，このような Late thrombo－ sis の症例報告が例外的なものなのか，あるいはベ アーメタルステントに比較してかなり高い頻度で発症するものか，さらにはLate thrombosis は全て の薬剤溶出性ステントに共通の問題なのか，ある いは一部の薬剤溶出性ステントにおいて特に懸念 すべきものなのかを明らかにする必要がある。そ の意味で，実地臨床における大規模レジストリー において Late thrombosis の頻度を明確にすること や，外科手術施行例のデータベースから薬剤溶出性ステント留置例の術後の結果を明らかにするこ となどが重要なアプローチであると考える。

当面，患者さんの安全性確保のためには， Aspirinと Thienopyridine 系抗血小板薬を長期に併用するということで慎重に対応するのが妥当と思 われる．また外科手術に際しての Aspirin について は画一的に中止することには根拠がなく，患者の心血管リスクと出血リスクのバランスでAspirin の継続の可否を決定すべきである．患者さんには，抗血小板療法の中止に伴って Late thrombosis の発症例が報告されていることをインフォームし，抗血小板療法に対するコンプライアンスの重要性や，外科手術を受ける際の循環器専門医への相談の必要性などについてしっかりと理解していただく必要があると考える。

薬剤溶出性ステントによる PCI の適応拡大

上記のように，遠隔期のステント血栓症につい ての懸念は残っているものの，明確な再狭窄抑制効果を反映して，PCIの適応拡大の可能性を示唆 する重要な報告もいくつか行われている。

Serruys PW らは多枝疾患に対する CYPHER ス テントの前向きレジストリーである ARTS－2 レジ ストリーの6ヶ月後の結果を報告している。ARTS－ 2 レジストリーでは，多枝疾患に対するCABG と

ベアーメタルステントを用いた PCIを比較した ARTS－1 ランダム化試験と同じ登録基準を用いてい るが，実際に登録された患者背景はARTS－2 レジ ストリーにおいて，糖尿病患者， 3 枝疾患，治療病変数が多かった。ARTS－2 CYPHER ステント群， ARTS－1 CABG 群，ARTS－1 PCI 群を比較すると， 6 ヶ月後の死亡率（ 0.5% vs 1.8% vs 2.3% ），脳血管障害（ 0.5% vs 1.2% vs 1.5% ），心筋梗塞（ 0.7% vs 3.5% vs 4.5% ）と，重大心事故はいずれも ARTS－2 CY－ PHER ステント群で低い傾向にあった。再度の CABG および PCI を含めた主要心事故の頻度も ARTS－2 CYPHER ステント群 6.4% ，ARTS－1 CABG群 9.0% ，ARTS－1 PCI 群 20.0% と，CYPHER ステ ント群においてCABG 群よりも低い傾向であった。勿論，現時点では6ヶ月の結果であり，PCI群では 6ヶ月から1年の間に再度の血行再建の頻度が増加 すると予想される。さらには新規病変の発生に起因する心事故については，CABG の保護的効果が証明されており，多枝疾患における CYPHER ステ ントを用いた PCI と CABG の長期成績について結論を出すには時期尚早であろう。しかしながら，長年の間 PCI の最大の問題であった繰り返す再狭窄について，一応の解決が視野に入り，再度の血行再建というイベントを含めてもPCI とCABGが競合できる可能性が示されたことは，多枝疾患に おける血行再建法選択に大きな影響を及ぼすこと は，PCI と CABGの侵襲性の差を考えれば明らか である．

さらに重要なことは，BARI試験において患者登録が行われた 15 年前に比較し，スタチン，ACE阻害薬，β 遮断薬，Thienopyridine 系抗血小板剤な ど薬物治療の進歩はめざましく，これら冠動脈疾患患者の生命予後改善効果の証明された薬剤は，動脈硬化進展予防，プラーク安定化，血栓形成抑制などを介して，CABG 施行例に比し PCI 施行例 により大きな好影響を与えるものと予測される。

また Park SJ らは従来からベアーメタルステント を用いて選択された（正常左室機能患者）左主幹部疾患患者にPCIを施行し，良好な成績を報告して きたが，今回 CYPHER ステントを用いた多数例の左主幹部疾患患者の PCI の自験成績を報告してい る． 135 例の非保護左主幹部疾患患者に対し， CYPHER ステントを用いた PCI を施行しているが，

今回の患者背景は従来と異なり， 51% の患者が高齢，低左室機能， 3 枝疾患などのハイリスク因子 を含んでいた。現時点での6ヶ月の成績は，死亡 0% ，TLR 1.5% ときわめて良好であった。左主幹部病変は，今後，薬剤溶出性ステントを用いた PCI がその適応を拡大して行く上で，もっとも重要な ターゲットであることは明らかであり，Park らの成績が今後，多施設の前向き研究で確認されれば，現在 CABG が施行されている患者の多くが PCI で安全に治療可能となると思われる。

PCI の適応拡大のために必要な

エビデンスの構築

今後，これらの観察研究をより高いエビデンス レベルで証明することを目的として，糖尿病患者 における薬剤溶出性ステントを用いたPCI とCABG を比較する FREEDOM 試験や，非保護左主幹部疾患患者および 3 枝疾患患者におけるTAXUS ステン トを用いた PCI と CABGを比較するSYNTAX 試験 などのランダム化試験が計画されている。特に非保護左主幹部疾患については，日本のインターベ ンション施行医には，今迄の経験やデータの蓄積 があり，こうしたガイドラインの基礎となる新し いエビデンスの構築を目的としたランダム化試験 に積極的に参加すべきであると考えている。しか しながら他方で，現状のデータを全て開示した時 に，日本人の患者さんの多くが，PCI とCABGと いう侵襲性が著しく異なる 2 つの治療法を比較す

る＂くじ引き試験＂への参加を同意されるのかと いうことについて，個人的には強い疑問を持って いる。

勿論，ランダム化試験は観察研究よりもエビデ ンスレベルが高いのではあるが，適切にデザイン された観察研究にはランダム化試験に劣らない価値があるとされている。PCI と CABGを比較する ランダム化試験では通常，超高齢者，低左室機能例，腎機能低下例，脳血管障害既往例などの重症例や，また完全閉塞病変など PCI に不適と考えら れる病変を有する患者は除外されている。したが って，ランダム化試験の結論はこのような重要な カテゴリーの患者群には適用できない。また患者登録に時間を要した場合，試験の結論が出た頃に は，PCI やCABG の方法論が変化し，また薬物治療の進歩もあって，試験の結論は古くさいものと なってしまうという問題もある。一方，観察研究 では患者選択にバイアスがあるということは勿論 であるが，Propensity score analysis や Cox propor－ tional hazard model などの適切な統計学的処理を用 いることによって，種々の患者群における PCI と CABGの成績について，患者選択バイアスを排除 してタイムリーに情報発信できる。ランダム化試験を行うことが困難な日本においては，適切にデ ザインされた観察研究を推進することこそが，新 たなエビデンスの構築に貢献する道であると考え ている。

[^0]: ＊京都大学循環器内科

