細胞内アルカリ化と血管機能

若 林 一 郎＊，諏 佐 真 治＊，後 藤 薫＊＊

はじめに

血液の pH は血管緊張に影響を及ぼす。アシド ーシスにより血管は弛緩し，アルカローシスによ り収縮する ${ }^{1,2)}$ 。その主なメカニズムとして，血管平滑筋細胞の電位依存性カルシウムチャネル機能 の pH 依存性が報告されている ${ }^{3)}$ 。一方，細胞内 pH は細胞外 pH の変化に影響されるが，血管平滑筋細胞では他の平滑筋細胞や心筋細胞に比べて細胞外 pH 変化時の細胞内 pH 変化がより急速に起こ $る^{4)}$ 。 さらに様々なアゴニストにより細胞が刺激さ れた際に，形質膜の $\mathrm{Na}^{+}-\mathrm{H}^{+}$交換系 $\left(\mathrm{Na}^{+}-\mathrm{H}^{+}\right.$ex－ changer，NHE）の活性が元進し，ナトリウムイオ ン流入とプロトン排出が同時に起こる結果，細胞内 pH が上昇する。本総説では血管平滑筋および内皮における細胞内アルカリ化と血管機能との関連性について概説する。

血管平滑筋の収縮機能と細胞内 $\mathbf{p H}$

NHE はアシドーシス時に作動する主な細胞内 pH 調節メカニズムとして重要であるが，NHEの アイソフォームの中でも形質膜で恒常的に発現し ている NHE－1 活性は，受容体刺激時のフォスファ チジルイノシトール水解反応とリンクして起こる プロテインキナーゼ C 活性化により上昇すること が知られている ${ }^{5}$ 。また，最近ではMAPK（mito－ gen－activated protein kinases）や RTK（receptor tyro－ sine kinases）が NHE－1 の活性化に重要であるとの報告がある ${ }^{6,7)}$ 。 さらに，NHE－1 はカルモジュリン結合部位を有し，細胞内カルシウムイオンの上昇 によっても活性化される ${ }^{8)}$ 。血管平滑筋ではアンギ

[^0]

図1 アンモニウムイオンによる細胞内アルカリ化 の機序

オテンシン II，バゾプレシン，エンドセリン，ト ロンビンなどのアゴニストにより NHE－1 が活性化 され細胞内アルカリ化が惹起されることが報告さ れている ${ }^{9 \sim 12)}$ 。実験で細胞内アルカリ化を惹起す る方法として，塩化アンモニウムなどの弱アルカ リイオンの投与がよく用いられる。その際，アン モニアの形で細胞内に流入した分子が細胞内でプ ロトンを享受して再度イオン化された結果，細胞内がアルカリ化される（図1）。塩化アンモニウムに よる細胞内アルカリ化はラット大動脈，ブタ冠動脈，イヌ肺動脈，ラット門脈などで持続性の収縮 を惹起する ${ }^{13 ~ 16)}$ 。一方，腸間膜や脳の細動脈では細胞内アルカリ化による血管収縮は認められず，逆に細胞内酸性化によって一過性の収縮が誘発さ れる ${ }^{17 ~ 19)}$ 。このように細胞内アルカリ化が血管緊張に及ぼす作用は小（抵抗）血管の場合と大血管の場合とで異なると考えられる。大血管でみられる細胞内アルカリ化による血管緊張増加のメカニズ ムとして，電位依存性カルシウムチャネルや容量依存性（ストア作動性）カルシウムチャネルを介す るカルシウムイオンの細胞外から内への流入の増加や ${ }^{20 \sim 22)}$ ，一過性の細胞内カルシウム貯蔵プール

図2 血管平滑筋収縮と細胞内アルカリ化との関係

からのカルシウム放出などが報告されている ${ }^{23)}$（図 2）．しかし，形質膜や小胞体膜に存在する様々な チャネルの pH 依存性など，収縮機能と関連した細胞内アルカリ化の作用メカニズムの詳細は不明 である．

一方，本態性高血圧患者由来の血小板ではNHE活性が方進していることが知られている ${ }^{24)}$ 。同様 の現象が血管平滑筋細胞でも予想されるが，高血圧患者における NHE 活性の亢進は，その成因とい うよりも，むしろ高血圧の結果出現する G 蛋白活性化の亢進を介して二次的に起こると考えられて いる ${ }^{25)}$ 。

細胞内アルカリ化と血管平滑筋細胞の増殖

細胞内アルカリ化と細胞増殖についてはこれま でに多くの報告があるが，最近では癌化に伴って細胞内アルカリ化や NHE 発現の増加が惹起される ことや，逆に細胞内酸性化および NHE 阻害剤によ り癌細胞の増殖が抑制されることが報告されてい $る^{26)}$ 。また β_{1-} アドレナリン作動性受容体のトラ ンスジェニックマウスで惹起される心肥大が NHE阻害剤である HOE642 によって予防されることが示されている ${ }^{27)}$ 。 これらの結果から細胞増殖にお いて細胞内アルカリ化がゲートキーパー的な役割 を果たしていることが示唆されており，血管平滑筋においても同様の制御機構の存在が推測される。

血管平滑筋の収縮や弛緩による血流調節が収縮型と呼ばれる分化した形態の血管平滑筋細胞によ

つて行われているのに対して，動脈硬化巣や冠動脈再狭窄病変などのリモデリングにおいては，蛋白合成能や増殖能に富んだ細胞へと形質転換した合成型と呼ばれる血管平滑筋細胞が主体となる。 この形質転換は血小板，マクロファージ，血管内皮細胞などの平滑筋周辺細胞から分泌される PDGF（platelet－derived growth factor），EGF（epi－ dermal growth factor），FGF（fibroblast growth factor）， TGF（transforming growth factor）$-\beta$ ，prostaglandin E_{2} ，thromboxane A 2 ， NO （nitric oxide）などによっ て誘導される ${ }^{28)}$ 。 これらの成長因子やサイトカイ ンによる平滑筋細胞の増殖制御機構として，レセ プターを介した RTK や MAPK 活性化のシグナル伝達経路が知られている。PDGF とEGF はウシ肺動脈平滑筋細胞の細胞内アルカリ化と増殖促進を惹起し，これらの作用はいずれもNHE 阻害剤であ る DMA（dimetyl amiloride）によって抑制される ${ }^{29)}$ 。 したがってこれらの成長因子がNHE の活性化によ る細胞内アルカリ化を介して平滑筋細胞の増殖を促進していることが示唆される。NHE において中心的役割を担う NHE－1 と血管平滑筋の増殖との関連性について，これまでにいくつかの報告がされ ている。家兎大動脈において増殖の盛んな胎生期 や新生児期には成長後に比べNHE－1 の発現が高い傾向があり，またバルーン傷害後の血管壁でも平滑筋細胞の増殖とともに NHE－1 発現の増加が観察 されている。また同時に血管平滑筋細胞の培養系 では NHE－1 発現は対数増殖期に増加し静止期に減少することが示された ${ }^{30)}$ 。 さらにNHE－1 の発現は PDGF や FGF 刺激により誘導されることも報告さ れている ${ }^{31)}$ 。以上の知見から，成長因子などの受容体刺激によって NHE－1 の発現が元進するととも に，フォスファチジルイノシトール代謝亢進によ るプロテインキナーゼ C 活性化の結果 NHE－1 活性も上昇し，細胞内アルカリ化が惹起され細胞増殖が促進されると考えられる。細胞内アルカリ化 による細胞増殖促進の機序については明らかでな いが，ラット培養大動脈平滑筋細胞では，塩化ア ンモニウムによる細胞内アルカリ化は，細胞増殖 の重要なシグナルと考えられている ERK－MAPK の活性化には影響を及ぼさなかった。一方，プロピ オン酸による細胞内酸性化により ERK は活性化さ れた。また Tris の添加により惹起された細胞外ア

ルカリ化はERK活性を元進させ，この作用は NADPH oxidase の活性化による酸化的ストレスの増加による可能性が示唆されている ${ }^{32)}$ 。

一方，高血圧モデルのSHR（spontaneously hy－ pertensive）ラットとその対照であるWKY（Wistar Kyoto）ラットの胸部大動脈平滑筋細胞を比較する と，NHE－1 の発現量には差がないものの，NHE－1活性と細胞増殖能が SHR ラット由来の平滑筋細胞 で亢進していることが示された ${ }^{33)}$ 。この結果から高血圧はNHE－1 の発現には影響を及ぼさないもの の，転写後の修飾によりNHE－1 活性が上昇し細胞増殖が亢進する可能性が推測される。このように NHE－1 活性化を介する細胞内アルカリ化は高血圧 に伴う動脈のリモデリングに関与すると考えられ る．また最近，肺動脈平滑筋細胞においてNHE 阻害剤であるDMA の投与がアポトーシスを惹き起 こすことが報告された ${ }^{34)}$ 。今後，血管平滑筋細胞内 pH の変化が細胞増殖などの動脈硬化進展の分子メカニズムにどのように関与しているか，さら なる研究が必要である。

血管内皮細胞での NO 産生と細胞内 pH

ブタ大動脈血管内皮細胞ではブラジキニンなど の刺激により一過性の細胞内酸性化に引き続いて，持続性の細胞内アルカリ化が惹起される。この細胞内アルカリ化は内皮細胞でのNO 産生と関連す るが，細胞内カルシウムイオンの上昇とは関連せ ず，アルカリ化による NO 合成酕素活性の上昇に よると報告されている ${ }^{35)}$ 。さらにラット脳底動脈 のアセチルコリンやブラジキニン刺激時のNOに よる弛緩反応はNHE 阻害剤で抑制され，逆に細胞内アルカリ化を惹起するモノメチラミンによって増強することから，この反応に細胞内アルカリ化 が関与していると考えられる ${ }^{36)}$ 。一方，ヒト臍帯静脈内皮由来の cell line では塩化アンモニウムに よる細胞内アルカリ化は容量依存性カルシウム流入を抑制する ${ }^{37)}$ 。これと一致して，ラット大動脈 でのアセチルコリンによる内皮依存性弛緩反応は塩化アンモニウムの前処置により抑制されること が報告されている ${ }^{38)}$ 。 さらにブタ冠動脈でのサブ スタンス P による内皮依存性弛緩反応も塩化アン モニウムの前処置により抑制されるが，この際に細胞内カルシウムイオンの上昇は影響を受けなか

Vascular endothelial cell

図3 血管内皮細胞のNO 産生における細胞内アル カリ化の意義

った ${ }^{39)}$ ．また，非刺激時のヒト肺動脈内皮細胞で は，塩化アンモニウムによる細胞内アルカリ化は細胞内カルシウムイオン濃度には影響を与えない という ${ }^{40)}$ 。以上から，図3に示すように血管内皮細胞でのNO 産生における細胞内アルカリ化の意義 は，血管の種類や実験条件（機械的アルカリ化とア ゴニズト刺激に伴うアルカリ化）により異なると考 えられる。大血管（動脈）の平滑筋と内皮ではいず れもアゴニズト刺激に伴い持続性の細胞内アルカ リ化が惹起されるが，血管平滑筋細胞で観察され るような細胞内アルカリ化によるカルシウム流入 の増加は血管内皮細胞では認められず，両細胞間 で細胞内アルカリ化の意義が異なると考えられる。

shear stress および低酸素と血管内皮細胞内 pH

血流による shear stress は血管内皮細胞からの NO 放出の重要な生理的刺激因子である ${ }^{41)}$ 。ラット大動脈培養内皮細胞では shear stress の影響によっ て細胞内酸性化が生じ ${ }^{42)}$ ，逆に急速な shear stress の減衰で細胞内アルカリ化が惹き起こされ ${ }^{43)}$ ，さ らに内皮依存性血管収縮とも関係していると報告 されている ${ }^{44)}$ 。一方，ウシ大動脈培養内皮細胞を用いた研究では平均灌流圧を上昇させると持続性 の細胞内酸性化が起こるのに対して，平均灌流圧 および灌流速度を一定にして灌流圧をパルス状に変化させると逆に細胞内アルカリ化が観察され， この細胞内アルカリ化はNHE 阻害剤やERK－ MAPK 阻害剤の存在下では観察されなかったとい $う^{45)}$ 。このように shear stress の加わり方によって も血管内皮細胞内 pH の変化が異なることが示唆

される．また shear stress は細胞内カルシウムイオ ン濃度には影響せず，チロシンリン酸化を介して NO 生成を促進することが示されている ${ }^{46)}$ 。しかし shear stressにより誘発される細胞内 pH の変化と血管内皮細胞でのNO など血管作動性物質の産生 との関係は未だ明らかにされていない。一方，低酸素は血管内皮機能を変化させるが，低酸素によ り NHEの活性化 ${ }^{47)}$ や細胞内 pH の上昇 ${ }^{48)}$ を介して細胞内への Na^{+}流入が誘導されることが報告され ている。

おわりに

受容体刺激とリンクした NHE－1 活性化により惹起される細胞内アルカリ化は血管平滑筋の収縮や増殖に関与する細胞内シグナルの一つである可能性が示唆される。しかし，その詳細なメカニズム は明らかでなく，さらに血管の種類によっても細胞内アルカリ化の影響は異なる。また，細胞内ア ルカリ化の血管内皮機能におよぼす影響は血管平滑筋の場合とは異なるが，ここでも細胞内アルカ リ化の影響は血管の種類によって異なり，そのメ カニズムに関しても不明な点が多く，今後の研究 が待たれる。

文 献

1）Rooke TW，Sparks HV Jr：Effect of metabolic versus respiratory acid－base changes on isolated coronary ar－ tery and saphenous vein．Experientia 1981；37：982－3．
2）Dacey RG Jr，Duling BR：A study of rat intracerebral arterioles：methods，morphology，and reactivity．Am J Physiol 1982；243：H598－606．
3）Klöckner U，Isenberg G：Calcium channel current of vascular smooth muscle cells：extracellular protons modulate gating and single channel conductance．J Gen Physiol 1994；103：665－78．
4）Austin C，Wray S：Extracellular pH signals affect rat vascular tone by rapid transduction into intracellular pH changes．J Physiol 1993；466：1－8．
5）Grinstein S，Rothstein A：Mechanisms of regulation of the $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger．J Membr Biol 1986；90：1－12．
6）Grinstein S，Rotin D，Mason MJ： $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchange and growth factor－induced cytosolic pH changes．Role in cellular proliferation．Biochim Biophys Acta 1989；988： 73－97．
7）Noel J，Pouyssegur J：Hormonal regulation，pharmacol－ ogy，and membrane sorting of vertebrate $\mathrm{Na}^{+} / \mathrm{H}^{+}$ex－ changer isoforms．Am J Physiol 1995；268：C283－96．
8）Wakabayashi S，Ikeda T，Iwamoto T，et al：Calmodulin－
binding autoinhibitory domain controls＂ pH －sensing＂in the $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger NHE1 through sequence－specific interaction．Biochemistry 1997；36：12854－61．
9）Berk BC，Aronow MS，Brock TA，et al：Angiotensin II－ stimulated $\mathrm{Na}^{+}-\mathrm{H}^{+}$exchange in cultured vascular smooth muscle cells．Evidence for protein kinase C－ dependent and－independent pathways．J Biol Chem 1987；262：5057－64．
10）Berk BC，Taubman MB，Griendling KK，et al：Throm－ bin－stimulated events in cultured vascular smooth－ muscle cells．Biochem J 1991；274：799－805．
11）Kikeri D，Zeidel ML，Ballermann BJ，et al： pH regula－ tion and response to AVP in A10 cells differ markedly in the presence vs．absence of $\mathrm{CO}_{2}-\mathrm{HCO}_{3}{ }^{-}$．Am J Physiol 1990；259：C471－83．
12）Koh E，Morimoto S，Kim S，et al：Endothelin stimulates $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchange in vascular smooth muscle cells． Biochem Int 1990；20：375－80．
13）Danthuluri NR，Deth RC：Effects of intracellular alka－ linization on resting and agonist－induced vascular tone． Am J Physiol 1989；256：H867－75．
14）Wakabayashi I，Kukovetz WR，Groschner K： $\mathrm{NH}_{4} \mathrm{Cl}-$ induced contraction of porcine coronary artery involves activation of dihydropyridine－sensitive Ca^{2+} entry．Eur J Pharmacol 1996；299：139－47．
15）Krampetz IK，Rhoades RA：Intracellular pH ：effect on pulmonary arterial smooth muscle．Am J Physiol 1991； 260：L516－21．
16）Wakabayashi I，Hatake K，Sakamoto K：Ammonium ion increases the tone of rat portal vein．Gen Pharmacol 1992；23：1189－92．
17）Matthews JG，Graves JE，Poston L：Relationships be－ tween pHi and tension in isolated rat mesenteric resis－ tance arteries．J Vasc Res 1992；29：330－40．
18）Tian R，Vogel P，Lassen NA，et al：Role of extracellular and intracellular acidosis for hypercapnia－induced inhi－ bition of tension of isolated rat cerebral arteries．Circ Res 1995；76：269－75．
19）Apkon M，Boron WF：Extracellular and intracellular alkalinization and the constriction of rat cerebral arteri－ oles．J Physiol 1995；484：743－53．
20）Schuhmann K，Voelker C，Hofer GF，et al：Essential role of the beta subunit in modulation of C－class L－type Ca^{2+} channels by intracellular pH．FEBS Lett 1997； 408：75－80．
21）Wakabayashi I，Masui H，Groschner K：Intracellular alkalinization augments α_{1}－adrenoceptor－mediated vasoconstriction by promotion of Ca^{2+} entry through the non－L－type Ca^{2+} channels．Eur J Pharmacol 2001； 428：251－9．
22）Wakabayashi I，Marumo M，Sotoda Y：Intracellular alka－ linization augments capacitative Ca^{2+} entry in vascular smooth muscle cells．J Cardiovasc Pharmacol 2003；41：

903－7．
23）Siskind MS，McCoy CE，Chobanian A，et al：Regulation of intracellular calcium by cell pH in vascular smooth muscle cells．Am J Physiol 1989；256：C234－40．
24）Siffert W，Dusing R：Sodium－proton exchange and pri－ mary hypertension．An update．Hypertension 1995； 26 ： 649－55．
25）Siffert W，Rosskopf D，Moritz A，et al：Enhanced G pro－ tein activation in immortalized lymphoblasts from pa－ tients with essential hypertension．J Clin Invest 1995； 96：759－66．
26）Reshkin SJ，Bellizzi A，Caldeira S，et al： $\mathrm{Na}^{+} / \mathrm{H}^{+}$ex－ changer－dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent trans－ formation－associated phenotypes．FASEB J 2000；14： 2185－97．
27）Engelhardt S，Hein L，Keller U，et al：Inhibition of $\mathrm{Na}^{+}-$ H^{+}exchange prevents hypertrophy，fibrosis，and heart failure in β_{1}－adrenergic receptor transgenic mice．Circ Res 2002；90：814－9．
28）Ross R：The pathogenesis of atherosclerosis：a perspec－ tive for the 1990s．Nature 1993；362：801－9．
29）Quinn DA，Dahlberg CG，Bonventre JP，et al：The role of $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchange and growth factors in pulmonary ar－ tery smooth muscle cell proliferation．Am J Respir Cell Mol Biol 1996；14：139－45．
30）Takewaki S，Kuro－o M，Hiroi Y，et al：Activation of $\mathrm{Na}^{+}-$ H^{+}antiporter（NHE－1）gene expression during growth， hypertrophy and proliferation of the rabbit cardiovascu－ lar system．J Mol Cell Cardiol 1995；27：729－42．
31）Rao GN，Sardet C，Pouyssegur J，et al：Differential regu－ lation of $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter gene expression in vascular smooth muscle cells by hypertrophic and hyperplastic stimuli．J Biol Chem 1990；265：19393－6．
32）Susa S，Wakabayashi I：Extracellular alkalosis activates ERK mitogen－activated protein kinase of vascular smooth muscle cells through NADPH－mediated forma－ tion of reactive oxygen species．FEBS Lett 2003；554： 399－402．
33）LaPointe MS，Ye M，Moe OW，et al： $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter （NHE－1 isoform）in cultured vascular smooth muscle from the spontaneously hypertensive rat．Kidney Int 1995；47：78－87．
34）Yao W，Qian G，Yang X：Roles of NHE－1 in the prolifera－ tion and apoptosis of pulmonary artery smooth muscle cells in rats．Chin Med J 2002；115：107－9．
35）Fleming I，Hecker M，Busse R：Intracellular alkaliniza－ tion induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells．

Circ Res 1994 ；74：1220－6．
36）Kitazono T，Kamouchi M，Ago T，et al：Role of $\mathrm{Na}^{+} / \mathrm{H}^{+}$ exchanger in dilator responses of rat basilar artery in vivo．Brain Res 2001；906：101－6．
37）Wakabayashi I，Groschner K：Divergent effects of ex－ tracellular and intracellular alkalosis on Ca^{2+} entry pathways in vascular endothelial cells．Biochem J 1997； 323：567－73．
38）Ando K，Fujita T：Inhibitory effect of ammonium chlo－ ride on acetylcholine－induced relaxation．Hypertension 1994；24：189－94．
39）Shimizu S，Paul RJ：Hypoxia and alkalinization inhibit endothelium－derived nitric oxide but not endothelium－ derived hyperpolarizing factor responses in porcine coronary artery．J Pharmacol Exp Ther 1999；291： 335－44．
40）Nishio K，Suzuki Y，Takeshita K，et al：Effects of hyper－ capnia and hypocapnia on $\left[\mathrm{Ca}^{2+}\right]$ i mobilization in human pulmonary artery endothelial cells．J Appl Physiol 2001； 90：2094－100．
41）Davies PF，Tripathi SC：Mechanical stress mechanisms and the cell．An endothelial paradigm．Circ Res 1993； 72：239－45．
42）Ziegelstein RC，Cheng L，Capogrossi MC：Flow－ dependent cytosolic acidification of vascular endothelial cells．Science 1992；258：656－9．
43）Ziegelstein RC，Blank PS，Cheng L，et al：Cytosolic alkalinization of vascular endothelial cells produced by an abrupt reduction in fluid shear stress．Circ Res 1998； 82：803－9．
44）Langille BL，O＇Donnell F：Reductions in arterial diame－ ter produced by chronic decreases in blood flow are en－ dothelium－dependent．Science 1986； 231 ：405－7．
45）Wittstein IS，Qiu W，Ziegelstein RC，et al：Opposite effects of pressurized steady versus pulsatile perfusion on vascular endothelial cell cytosolic pH ：role of tyro－ sine kinase and mitogen－activated protein kinase sig－ naling．Circ Res 2000；86：1230－6．
46）Ayajiki K，Kindermann M，Hecker M，et al：Intracellular pH and tyrosine phosphorylation but not calcium de－ termine shear stress－induced nitric oxide production in native endothelial cells．Circ Res 1996；78：750－8．
47）Mazzoni MC，Intaglietta M，Cragoe EJ，et al：Amiloride－ sensitive Na^{+}pathways in capillary endothelial cell swelling during hemorrhagic shock．J Appl Physiol 1992；73：1467－73．
48）Foy RA，Shimizu S，Paul RJ：The effects of hypoxia on pHi in porcine coronary artery endothelium and smooth muscle．A novel method for measurements in endothe－ lial cells in situ．Circ Res 1997；80：21－7．

[^0]: ＊山形大学医学部環境病態統御学講座環境病態医学分野
 ＊＊同 医学部情報構造統御学講座組織細胞生物学分野

