## 杀公説覚

## GABA システムと循環

渡 辺 正 仁＊，冨 士 仁 見＊＊阪 上 久美子＊＊，田 中 一 彦＊＊

## 要 旨

$\gamma$－アミノ酪酸（GABA）は中枢神経系における抑制性のアミノ酸性神経伝達物質であることは良く知られている。しかし，GABA は末梢神経や末梢 の非神経組織にも存在する。循環の調節は主とし て自律神経系によって制御されているが，中枢神経内での自律神経節前ニューロンの調節にGABA作動性ニューロンが関わっている．また，最近， ストレスが血圧などに影響するメカニズムが明ら かになりつつある。一方，脳内の循環には自律神経系は作用せず，局所の GABA 作動性介在ニュー ロンやマイネルト核から大脳皮質に広く投射する コリン作動性ニューロンが大脳新皮質や海馬など の血流を GABA 受容体を介して調節するメカニズ ムがある。 さらに，GABA の摂取や投与によって血圧の低下が起こるが，これは交感神経節後線維終末からのノルアドレナリン放出を，GABAB 受容体を介して抑制するためと考えられている。

## はじめに

$\gamma$－アミノ酪酸はタンパク構成アミノ酸ではなく，遊離の状態で存在するアミノ酸で，GABA（ギャ バ）と略称される。最近のサプリメントブーム，特 にアミノサプリやアミノバイタルといったアミノ酸を含有する健康補助食品がアミノ酸ブームを引 き起こし，さらに大手メーカーが，「血圧が高めの方に適する」という GABA 含有発酵乳製品を発売 したことで一気に有名となった。
GABA が哺乳動物の中枢神経系における抑制性

[^0]のアミノ酸性神経伝達物質であることは良く知ら れている。この GABA は興奮性のアミノ酸性神経伝達物質であるグルタミン酸の脱炭酸によって 1段階で合成される。この段階で働く酵素をグルタ ミン酸脱炭酸酵素（GAD：ギャドあるいはジーエー ディーと読む）という。 さらに GABA がその作用 を発揮するためには，GABA 受容体に結合するこ とが必要であり，これらをまとめて GABA システ ムという。

## GABA の歴史 ${ }^{1)}$

GABA はバクテリアや植物界では古くから知ら れたアミノ酸であり，植物では発芽玄米やトマト， チョコレートの原料であるカカオなどに多く含ま れる。しかし，動物界では1950年に脳中に発見さ れたのが最初である。脳中 GABA 発見とは別に， 1954年，ウシ脳抽出液中に発見された Factor I （GABA が主成分の混合物）がモルモットやウサギ の腸管運動を抑制することや2），ウサギの下腸間膜神経節やネコの星状神経節に対して抑制作用を示 すが，ネコの腓腹筋と前脛骨筋の神経筋接合部に対しては抑制効果を示さなかったことが報告され ている ${ }^{3)}$ 。哺乳動物の中枢神経系での GABA 作用 が本格的に研究され出したのは1960年代後半から で， 1970 年代に入ってから抑制性伝達物質として の地位が確立した。

## GABA の代謝系 ${ }^{4.5)}$

GABA はGAD によるグルタミン酸の脱炭酸で生成される。グルタミン酸から GABAへの反応は ほとんど不可逆的である。GABA の分解に関わる酵素は GABA－T である。この反応で GABA はコハ ク酸セミアルデヒドとなり，さらにSSADH によっ

て速やかに酸化され，コハク酸となりTCAサイク ルに戻る。これが GABA 代謝のメインルートで GABA 側路と呼ばれる（図1）。

この代謝経路での律速酵素である GAD には 2 つ のアイソフォーム，すなわち GAD65 と GAD67 が存在する。それぞれの分子量が 65400 と 66600 で あることから名付けられ，GAD65 と GAD67 の遺伝子は異なった染色体に位置する。この 2 つの GAD アイソフォームは同一の GABA 作動性ニュー ロンに発現しているが，GAD65 は細胞膜や神経終末に多く，GAD67 は細胞質全体に存在するので，特に GAD65 はニューロン軸索終末の小胞からの GABA 放出，すなわち神経伝達に関わると考えら れている．GAD65 と GAD67 は神経組織以外にも存在する．系統発生学的研究によると GAD65 と GAD67 は共通の祖先遺伝子から $4 \sim 5$ 億年前に分 かれたという，いずれにしても， 1 つの伝達物質 の生成酵素が 2 つの異なった遺伝子の産物である例は他の伝達物質では見当たらないことから， GABA の生理機能を理解する上で 2 つの GAD の役割を解明することが重要となっている。

また，脳内では GABA の代謝に関してニューロ ンと星状膠細胞の間で役割分担がある。GABA は グルタミン酸以外に，プトレッシンを前駆物質と して合成される。プトレッシンはスペルミジンや スペルミンの前駆物質で，これらポリアミンは細胞増殖や分化に関与すると考えられている。 さら に GABA 生成の別ルートにはアルギニンやオルニ チン経路もある。また，GABAとヒスチジンとの ジペプチドであるホモカルノシンも GABA の前駆物質となり得る。

## GABA の組織分布 ${ }^{4.5)}$

GABAは多くの非神経組織にも分布している．循環器系に限っても，GABA についてはヒトの血晋 ${ }^{6,77}$ ，血液8），ラットの大動脈，大静脈，大腿動脈，腸間膜動脈9），血腺 ${ }^{10,11)}$ ，心臓 ${ }^{11)}$ ，脾臓 ${ }^{11,122}$ ，ウサギ の大動脈，大静脈，大腿動脈，腸間膜動脈8）などの報告がある。
GAD についてはラットの大動脈，大静脈，大腿動脈，腸間膜動脈8）脾臓，心臓 ${ }^{13)}$ ，マウスの脾臓，血液 ${ }^{14)}$ ，ウサギの大動脈，大静脈，大腿動脈，腸


図1 GABA 合成のメインルート
GABA－T，$\gamma$－Aminobutyrate transaminase ；GAD，Glutamate decarboxylase ； SSADH，Succinic semialdehyde dehydrogenase

間膜動脈，下大静脈，内頸静脈自，${ }^{15)}$ ，などの報告が ある。また，GABA－T についてはヒトの血小板 ${ }^{16)}$ ， ラットの血小板 ${ }^{16)}$ ，マウスの心臓 ${ }^{17}$ ，モルモットの血小板 ${ }^{16)}$ ，犬の血小板 ${ }^{16)}$ などの報告がある。これら の GABA，GAD，GABA－T に関する研究はいずれも生化学的に測定されたものである。近年では，こ れらの分布は組織化学的に調べられている。我々 も放射性標識 GABA を用いて，マウス全身組織•器官における分布を明らかにし，新たに GABA の標的となる可能性を持つ組織を見出した ${ }^{18)}$（図2）．

## GABA 受容体 ${ }^{5}$

GABA は GABA 受容体に結合することで，その機能を発揮する。GABA受容体には大きく 2 つ， イオンチャネル型受容体である GABAA，GABAc受容体と，G 蛋白共役型受容体である GABAB 受容体がある。

GABAA 受容体は 4 つの膜貫通ドメインを持った サブユニットが 5 つ合わさって，その中心部に $\mathrm{Cl}^{-}$ チャネルを形成する受容体である（図3）．GABAA


図2 放射性 GABA 投与後の全身オートラジオグラフィー
放射性 GABA をマウス尾静脈に投与し， 3 分後にマウスを凍結，ミクロトームで凍結切片を作成，レントゲン フィルムに露出，現像して得られた像。GABAは松果体や下垂体には非常によく取り込まれるが，脳実質内には取り込まれない。この全身オートラジオグラフィーを拡大して，様々な組織を詳しく調べると，GABA を特異的 に取り込む組織のあることが分る。（参考文献 18 の論文に掲載の図の一部を使用した）


図3 GABAA受容体
GABAA 受容体はそれぞれ 4 回膜貫通部を持った 5 つのサブユニットからなる 5 量体で，中心に $\mathrm{Cl}^{-}$イオンチ ヤネルを形成している。細胞外 $\mathrm{Cl}^{-}$イオン濃度が高いと，GABA が結合することでチャネルが開き， $\mathrm{Cl}^{-}$イオン が細胞内に流入することで過分極する。GABAA受容体にはGABA 結合部位の他，ベンゾジアゼピン，バルビツ ール酸，アルコール，ステロイドなどの結合部位がある．

受容体を構成するサブユニットには $\alpha, \beta, \gamma, \delta$ ， $\varepsilon, \pi, \theta$ など 7 つのクラスが知られており，さら に $\alpha$ には 1－6，$\beta$ には $1-3$ ，$\gamma$ には $1-3$ のサブクラ スのあることが知られている。機能的に作用する GABAA 受容体には少なくとも一つずつの $\alpha, \beta, \gamma$ サブユニットが含まれており，$\delta$ や $\varepsilon$ サブユニッ トは $\gamma$ サブユニットと代わりうる。このような GABAA 受容体の多様性が薬理学的な多様性に関係 する．GABAA 受容体には GABA の結合部位のほか， Benzodiazepine をはじめ，Steroids，Barbiturates， Halothane のような揮発性麻酔剤，さらにアルコー ルに対する結合部位がある。一昔前に言われた中枢性 Benzodiazepine 受容体とは GABAA 受容体の ことである。また，$\rho$ サブユニット $(\rho 1, \rho 2, \rho 3)$ があるが，$\rho$ サブユニットのみで構成されるのが GABAc 受容体である．

GABAB 受容体は 7 つの膜貫通ドメインを持った R1とR2 のサブユニットで構成される（図4）．R1 には a から g の 7 つのアイソフォームが知られて いる．GABAb 受容体は Gi／Go 蛋白と共役し，アデ ニル酸シクラーゼの活性阻害， $\mathrm{K}^{+}$チャネルの活性化， $\mathrm{Ca}^{2+}$ チャネルの抑制などの作用がある．

## 一般的な循環調節について

血流は身体の状況によって器官•組織単位で変化する．これを決定するのは心臓の駆出力と血管 の状態であるが，これらの調節には自律神経系と，内分泌系を含めた化学物質が関与している。自律神経による調節としてはノルアドレナリン（NA）を放出する交感神経性血管収縮神経，アセチルコリ ンを放出する交感神経性血管拡張神経（骨格筋の血管に分布）と副交感神経性血管収縮神経（唾液腺，舌，陰茎などの血管に分布）がある。アセチルコリ ン $(\mathrm{ACh})$ 受容体にはムスカリン性とニコチン性の 2種類の受容体があるが，末梢組織の血管ではムス カリン性受容体を介して血流増加が起こる。NAを伝達物質として放出する神経線維をアドレナリン作動性と呼び，ACh を伝達物質として放出する神経線維をコリン作動性と呼ぶ。

ホメオスタシスを保つために自律神経系は様々 な感覚刺激に反応する。例えば，皮膚の痛みを誘発する侵害刺激は皮膚からの出血を抑えるために交感神経を興奮させ，血管を収縮させる。同時に痛みは外側春髄視床路を上行するが，この伝導路 は側枝を延髄の吻側腹外側野（RVLM）に送り，血圧


図4 GABAB 受容体
GABAB 受容体はそれぞれ 7 回膜貫通部を持った R1とR2 サブユニットからなる．細胞膜内部で coiled－coil ド メインと呼ばれる部位で結合したヘテロダイマーである。この受容体は G 蛋白共役型受容体で，Gi／Go 蛋白と共役し，アデニル酸シクラーゼの活性阻害， $\mathrm{K}^{+}$チャネルの活性化， $\mathrm{Ca}^{2+}$ チャネルの抑制などの作用がある．

や心拍数を増加させる．ホメオスタシス維持には体内状況の情報も重要であるが，これらは胸腔や腹腔から迷走神経を通って，あるいは頭部や頸部 から舌咽神経を通って脳に伝えられる。これらに加えて，顔面神経からの味覚情報などが延髄の孤束核（nucleus tractus solitarius）に集まる。孤束核は それ自体，あるいは別の核を介して自律神経系に影響を及ぼす。

普通の状態では殆ど全ての血管は持続的な交感神経の作用により，半分くらいに収縮しているの で，交感神経の抑制で血管は拡張する．また，さ らに交感神経が興奮すれば血管は収縮する。交感神経の節前ニューロンは胸髄から腰髄にかけての側柱にあるが，血管収縮に関する命令は主に吻側腹外側野から出される。血圧上昇による大動脈弓 や頸動脈洞に分布する血圧受容器（baroreceptor）の刺激は孤束核に伝わり，ここからのニューロンは延髄の尾側腹外側野（CVLM）の介在ニューロンを興奮させ，持続的に血管を収縮させている交感神経を抑制すると共に，心臓に行く迷走神経を興奮 させる．この結果，圧受容反射として知られてい るように，動脈圧と心拍数の低下が起こる。

ホルモンや化学物質による調節としては血管収縮作用を持つバソプレッシン（VP），セロトニンや NA の他，ここでは省略するがレニンーアンジオテ ンシン系のアンジオテンシン II がある。またヒス タミン，プロスタグランジン E や一酸化窒素（ NO ） は血管扩張作用を持つ。

## 末梢の循環器系調節に関わる脳内 GABA システム

成熟した脳では，GABA は一部の部位を除いて

脳から出ることはあっても脳内には入らない ${ }^{18 ~ 20)}$ ．脳内に GABA アゴニストを投与すると血圧が上が ったり下がったりする。これは投与量や投与部位 の違いによるらしく，延髄の心臓血管制御中枢で ある孤束核投与では上がり，脳室内や第 3 脳室に面する視床下部の室旁核投与では下がる。これは交感神経を刺激したり，迷走神経を刺激したりし た結果と考えられている ${ }^{21)}$ 。室旁核も心臓血管制御に関係し，孤束核や脊髄の自律神経核との連絡 を持つ。室旁核は血管収縮作用を持つVPを分泌 し，これが下垂体後葉に運ばれるが，この分泌抑制に GABA が関わっている。これと直接関連する かどうかは不明ではあるが，これまでGABA との関連は考えられていなかった atenolol や captopril などの高血圧治療薬が高血圧自然発症ラット視床下部の GABA 量を上げることが報告されている ${ }^{22)}$ 。

心臓に分布し，心拍数の調節に関与する副交感神経節前ニューロンの細胞体は，延髄内の疑核や迷走神経背側運動核にある。アルギニンVPは血圧や心拍数をコントロールする神経ペプチドであ るが，疑核にはアルギニンVPニューロンが投射 しており，このニューロンが疑核の副交感ニュー ロンにシナップスする GABA 作動性ニューロンを制御するという報告がある ${ }^{23)}$ 。

## ストレスと循環調節

様々なストレスは血圧を上昇させる。これはス トレスが感情反応の開始と発現に関与する扁桃体 に影響し，ここから出る GABA 作動性ニューロン が延髄の孤束核に働きかけ，交感神経の活動を変化させるためであると考えられている（図5）${ }^{24)}$ 。


図5
ストレスは扁桃体に影響を及ぼし，ここから GABA 作動性ニューロンが延髄の孤束核（NTS）に働きかけ，交感神経の活動を高める。

## GABA の末梢効果

GABA の末梢効果としては古く 1959 年に kg 当 たり 1 mg の GABA を犬に投与すると血圧降下と徐脈の起こることが観察されている。この GABA 作用は両側の迷走神経切除でも変わらないことから，末梢の交感神経節を抑制した結果と考えられた ${ }^{25)}$ ． これは血管を用いた in vitro の実験で，GABA が交感神経節後線維の神経終末を，GABAB 受容体を介 して抑制するためであると証明された ${ }^{266}$ 。これは中枢破壊されたラットを用いた実験でも証明され ている ${ }^{27}$ 。最近，GABA 添加大豆食品や発酵乳製品が高血圧のヒトや動物の血圧を下げることが注目されているが，これも同じメカニズムによると考えられている ${ }^{28 \sim 30)}$ 。

腸の神経叢にはGABA 作動性ニューロンが多く分布しているが，この GABA ニューロンは腸管内 の血管と近接して存在することから，血流の調節 に関与することが示唆されている ${ }^{311}$ 。

## 脳内循環系に対する GABA システム

血中に投与された GABA は脳内には移行しない ので，脳内の血管には影響しない。コリン作動性 の副交感神経線維もVirchow－Robin 腔（胶内に血管 が侵入する部分に見られる血管周囲の腔）までしか分布しないので，脳実質内の血流調節には別のシ ステムが考えられる．脳内の血流調節に関しては最近，前脳基底部にあるマイネルト核から大脳皮質に広く投射するコリン作動性ニューロン（basal forebrain neuron； BF ニューロン）の関与が注目され ている（図6）． BF ニューロンは様々な認知機能や

学習，記憶などに関与しているが，このニューロ ンが大脳新皮質や海馬などの血流を調節するこ とが分っている． BF ニューロンは大部分 ACh を伝達物質としているが，NOニューロンや GABA ニューロンも含んでいる ${ }^{32)}$ 。しかし，血管近傍に存在する GABA ニューロンの殆どは局所の GABA介在ニューロンである。この GABA 介在ニューロ ンは血管拡張作用を持つ NO や血管作動性小腸ペ プチド（VIP）を共存させている ${ }^{333}$ 。BFニューロン は血管に直接，また GABA 介在ニューロンとも連絡しているらしい。GABA はGABAA受容体を介し て脳の血管を拡張し，GABAB受容体を介して収縮 することも知られている ${ }^{34,35}$ 。血管の拡張は，外向 き $\mathrm{K}^{+}$を増加させる $\mathrm{K}^{+}$チャネルが細胞膜電位を過分極することで開始するが，GABA はGABAB 受容体を介して $\mathrm{K}^{+}$チャネルを活性化する働きがある。 このあたりはこれからの研究課題であると思われ る。

## GABA の心筋保護作用

心室の筋に GABABR1と GABABR2 の両サブユ ニットの発現が確かめられている ${ }^{36)}$ 。この機能的意義としては，心筋細胞の G 蛋白質制御性内向き整流カリウムチャネルである Kir3チャネルに働き かけることが考えられている。興味深いことに心臓には，GABA の代謝産物で GABAB受容体アゴニ スト様作用を持つ $\gamma$－hydroxybutylate（GHB）が脳よ り高濃度に存在する ${ }^{377}$ 。イソプロテレノールは心筋細胞内に脂肪滴を蓄積させ，ついには心筋細胞 を死滅させるが，GHB はイソプロテレノールで障害された心筋を保護することが報告されている ${ }^{38)}$ 。


図6 前脳基底部から大脳皮質および海馬に投射する BF ニューロン コリン作動性ニューロンで，大脳皮質や海馬の血流を調節している。


非神経組織での働き
図7
GABA は神経系以外に様々な非神経組織で生理的機能を持っている。植物では花粉管の成長に GABA が関わっ ていることが知られている。これが最も基本的な GABA の生理機能で，脊椎動物になると GABAには組織特異的にいろいろの役割が与えられるようになったと考えられる．

GHB は国外ではすでにナルコレプシーの治療に用 いられている。

## GABA のその他の生理作用

GABA はこれまで述べた以外に，神経細胞の分裂 ${ }^{39)}$ や移動 ${ }^{40,41)}$ ，成長 ${ }^{42)}$ ，生存 ${ }^{43,44)}$ などの機能を有 することが知られている。我々は神経組織以外で の軟骨細胞の増殖に GABA が GABAB 受容体を介 して働くことを示した ${ }^{45}$（図7）．また，大腸癌細胞 では GABA の産生量が非常に増加していることを示した ${ }^{46)}$ 。前立腺癌細胞では転移型の細胞に GABA の発現を認め，これが GABAB 受容体を介してマ トリックス分解酵素（MMP）の発現を促し，癌細胞 の移動性を増すことから，癌の転移にGABA が関 わっている可能性を示した ${ }^{47)}$ 。そこで，癌の成長 には血管新生が伴うことから，ヒト臍帯静脈内皮細胞（HUVEC）を用いて GABA の作用を調べたと ころ，HUVEC にも GABAB 受容体が発現しており， GABA が HUVEC の移動性を増すことを確認した （図8）$)^{48)}$ 。この実験はまだ途中であるが，恐らく前立腺癌細胞と同じように MMP 発現を促している ものと考えている。

## おわ りに

これまでに知られている GABA システムの循環 に対する役割は，中枢神経系や自律神経系を介し たものが殆どで，この総説で紹介したのは多くの


図8 HUVEC の浸潤活性に及ほすバクロフェンの影響
HUVEC を培養下で GABAB 受容体アゴニストの バクロフェンで刺激し，Biocoat Matrigel Invasion Chamber kit（Becton－Dickinson）を用いて浸潤活性を調べたところ，コントロールと比べて有意の増加を認めた。

研究の一部に過ぎない。しかし，解決されていな いこともまだまだ多い。特に，GABA 受容体に関 しては，サブユニットの組み合わせが何れの血管 でも同じなのか，差があるのか，また，GABAA 受容体と GABAB 受容体の関係についての研究はな されていない。一方，GABA が血管内皮細胞に発現していることはかなり以前から知られており，今後はその機能的意義を解明していく段階にさし かかりつつある。特に GABAB 受容体は，G 蛋白共役型受容体であることから，細胞機能への広い範

囲の関与が考えられる。また，血管内皮細胞は恒常性を保ったり炎症反応に対応したりするため，組織液との間の物質交換，すなわち血管の透過性 に関わっているが，これに GABA 輸送体が関与し ているらしいとも考えられている ${ }^{49)}$ 。しかしなが ら，これらは GABA システムが単独で作用する結果とは考えにくい。他の様々なホルモンや成長因子，サイトカイン等と関わりを持っているものと思う。 GABA 合成酵素の GADは補酵素としてビタ ミンB6由来のピリドキサルリン酸を必要とする。 したがって，ビタミンB6 欠乏は循環系の障害と関係するかもしれない。末梢非神経組織における GABA システムの研究は，まだ緒に就いたばかり である．循環器系においても GABA システムが働 いていることは確かであり，今後の研究の発展が待たれるところである。

## 文 献

1）渡辺正仁，神原清人，前村憲太朗ら：$\gamma$－アミノ酪酸 （GABA）：発見から抑制性神経伝達物質としての確立まで．大阪医科大学雑誌 2000；59：1－6．
2）Florey E：The action of factor I on certain invertebrate organs．Can J Biochem Physiol 1956；34：669－81．
3）Florey E，McLennan，H：The release of an inhibitory substance from mammalian brain，and its effect on pe－ ripheral synaptic transmission．J Physiol 1955；129： 384－92．
4）渡辺正仁，林 秀行，前村憲太朗ら：$\gamma$－アミノ酪酸 （GABA）の代謝系．大阪医科大学雑誌 2001；60：1－16．
5）Watanabe M，Maemura K，Kanbara K，Tamayama T， Hayasaki H：GABA and GABA receptors in the central nervous system and other organs．Int Rev Cytol 2002； 213：1－47．
6）Jaeken J，Casaer P，de Cock P，et al：Gamma－aminobutyric acid－transaminase deficiency：A newly recognized in－ born error of neurotransmitter metabolism．Neuropedi－ atrics 1984；15：165－9．
7）Löscher W：GABA in plasma and cerebrospinal fluid of different species．Effects of $\gamma$－acetylenic GABA，$\gamma-$ vinyl GABA and sodium valproate．J Neurochem 1979； 32：1587－91．
8）Grossman MH，Hare TA，Manyam NVB：Measurement of $\gamma$－aminobutyric acid in human whole blood and amni－ otic fluid．Fed Proc 1979；38： 375.
9）Hamel E，Krause DN，Roberts E：Specific cerebrovas－ cular localization of glutamate decarboxylase activity． Brain Res 1981；223：199－204．
10）Zachmann M，Tocci P，Nyhan WL：The occurrence of $\gamma-$ aminobutyric acid in human tissues other than brain．J

Biol Chem 1966；241：1355－8．
11）Gerber JC，Hare TA：Gamma－aminobutyric acid in pe－ ripheral tissue，with emphasis on the endocrine pan－ creas：Presence in two species and reduction by strep－ tozotocin．Diabetes 1979；28：1073－6．
12）Taniguchi H，Okada Y，Kobayashi T，et al：High concen－ tration of $\gamma$－aminobutyric acid and its role in B－cells of pancreatic islets．In：Baba S，Kaneko T，Yanaihara N， eds，Proinsulin，Insulin，C－Peptide，Amsterdam：Ex－ cepta Medica，1979．p．335－47．
13）MacDonnell P，Greengard O：The distribution of gluta－ mate decarboxylase in rat tissues：Isotopic vs fluori－ metric assays．J Neurochem 1975；24：615－8．
14）Drummond RJ，Phillips AT：L－glutamic acid decarboxy－ lase in non－neural tissues of the mouse．J Neurochem 1974；23：1207－13．
15）Kuriyama K，Haber B，Roberts E：Occurrence of a new L－glutamic acid decarboxylase in several blood vessels of the rabbit．Brain Res 1970；23：121－3．
16）White HL，Faison LD：GABA－T in blood platelets：Com－ parison with GABA－T of other tissues．Brain Res Bull 1980；5（Suppl．2）：115－9．
17）Wu JY，Moss LG，Chude O：Distribution and tissue specificity of 4－aminobutyrate－2－oxoglutarate amino－ transferase．Neurochem Res 1978；3：207－19．
18）Kuroda E，Watanabe M，Tamayama T，et al：Autoradio－ graphic distribution of radioactivity from ${ }^{14} \mathrm{C}-\mathrm{GABA}$ in the mouse．Microsc Res Tech 2000；48：116－26．
19）Kakee A，Takanaga H，Terasaki T，et al：Efflux of a sup－ pressive neurotransmitter，GABA，across the blood－ brain barrier．J Neurochem 2001；79：110－8．
20）Al－Sarraf H：Transport of 14C－gamma－aminobutyric acid into brain，cerebrospinal fluid and choroids plexus in neonatal and adult rats．Brain Res Dev Brain Res 2002； 139：121－9．
21）DeFeudis FV：$\gamma$－Aminobutyric acid and cardiovascular function．Experientia 1983；39：845－9．
22）Guan Y，Miao CY，Su DF：Effects of six antihypertensive drugs on blood pressure and hypothalamic GABA con－ tent in spontaneously hypertensive rats．Fundam Clin Pharmacol 2001；15：221－6．
23）Wang J，Irnaten M，Venkatesan P，et al：Arginine vaso－ pressin enhances GABAergic inhibition of cardiac para－ sympathetic neurons in the nucleus ambiguous．Neuro－ science 2002；111：699－705．
24）Saha S：Role of the central nucleus of the amygdale in the control of blood pressure：descending pathways to medullary cardiovascular nuclei．Clin Exp Pharmacol Physiol 2005；32：450－6．
25）Elliott KAC，Hobbiger F：Gamma aminobutyric acid： Circulatory and respiratory effects in different species； re－investigation of the anti－strychnine action in mice．J Physiol－Lond 1959；146：70－84．

26）Starke K，Weitzell R：$\gamma$－Aminobutyric acid and post－ ganglionic sympathetic transmission in the pulmonary artery of the rabbit．J Autonom Pharmacol 1980；1：45－ 51.

27）Kohlenbach A，Schlicker E：GABAB receptor－mediated inhibition of the neurogenic vasopressor response in the pithed rat．Br J Pharmacol 1990；100：365－9．
28）Hayakawa K，Kimura M，Kasaha K，et al：Effect of a gamma－aminobutyric acid－enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar－Kyoto rats．Br J Nutr 2004；92： 411－7．
29）Inoue K，Shirai T，Ochiai H，et al：Blood－pressure－ lowering effect of a novel fermented milk containing gamma－aminobutyric acid（GABA）in mild hyperten－ sives．Eur J Clin Nutr 2003；57：490－5．
30）Kimura M，Hayakawa K，Sansawa，H：Involvement of gamma－aminobutyric acid（GABA）B receptors in the hypotensive effect of systemically administered GABA in spontaneously hypertensive rats．Jpn J Pharmacol 2002；89：388－94．
31）Krantis A：Selective uptake of $\gamma-\left[{ }^{[3} \mathrm{H}\right]$ aminobutyric acid by neural elements and vascular nerves of the rat intes－ tinal submucosa．Neurosci Lett 1990；109：1－6．
32）Vaucher E，Tong XK，Cholet N，et al：GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex：a means for direct regulation of local cerebral blood flow．J Comp Neurol 2000；421：161－71．
33）Hamel E：Cholinergic modulation of the cortical mi－ crovascular bed．Prog Brain Res 2004；145：171－8．
34）小野信文：脳の微小循環：Autoregulationを中心とし て．日本薬理学雑誌 1999；113：203－10．
35）Fergus A，Lee KS：GABAergic regulation of cerebral Microvascular tone in the rat．J Cerebr Blood F Metab 1997；17：992－1003．
36）Lorente P，Lacampagne A，Pouzeratte Y，et al：$\gamma-$ Aminobutyric acid type B receptors are expressed and functional in mammalian cardiomyocytes．Proc Natl Acad Sci U S A 2000；97：8664－9．
37）Nelson T，Kaufman E，Kline J，et al：The extraneural distribution of gamma－hydroxybutyrate．J Neurochem 1981；37：1345－8．
38）Kolin A，Brezina A，Mamelak M，et al：Cardioprotective action of sodium gamma－hydroxybutyrate agonist iso－
proterenol induced myocardial damage．Int J Exp Pathol 1993；74：275－81．
39）LoTurco JJ，Owens DF，Heath MJS，et al：GABA and glutamate depolarize cortical progenitor cells and in－ hibit DNA synthesis．Neuron 1995；15：1287－98．
40）Behar TN，Li YX，Tran HT，et al：GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium－dependent mechanisms．J Neuro－ sci 1996；16：1808－18．
41）Behar TN，Schaffner AE，Scott CA，et al：Differential response of cortical plate and ventricular zone cells to GABA as a migration stimulus．J Neurosci 1998；18： 6378－87．
42）Ahman AK，Wagberg F，Mattsson MO：Two glutamate decarboxylase forms corresponding to the mammalian GAD65 and GAD67 are expressed during development of the chick telencephalon．Eur J Neurosci 1996；8： 2111－7．
43）Ikeda Y，Nishiyama N，Saito H，et al：GABAA receptor stimulation promotes survival of embryonic rat striatal neurons in culture．Brain Res Dev Brain Res 1997；98： 253－8．
44）Obata K：Excitatory and trophic action of GABA and related substances in newborn mice and organotypic cerebellar culture．Dev Neurosci 1997；19：117－9．
45）Tamayama T，Maemura K，Kanbara K，et al：Expression of GABAA and GABAB receptors in rat growth plate chondrocytes：Activation of the GABA receptors pro－ motes proliferation of mouse chondrogenic ATDC5 cells．Mol Cell Biochem 2005；273：117－26．
46）Maemura K，Yamauchi H，Hayasaki H，et al：$\gamma$－Amino－ butyric acid immunoreactivity in intramucosal colonic tumors．J Gastroenterol Hepatol 2003；18：1089－94．
47）Azuma H，Inamoto T，Sakamoto T，et al：$\gamma$－Aminobutyric acid as a promoting factor of cancer metastasis；induc－ tion of matrix metalloproteinase production is poten－ tially its underlying mechanism．Cancer Res 2003；63： 8090－6．
48）冨士仁見，玉山卓己，田中一彦ら：HUVEC における GABAB 受容体を介した細胞移動に関する研究。解剖学雑誌，in press．
49）Petronini PG，Alfieri RR，Losio MN，et al：Induction of BGT－1 and amino acid system A transport activities in endothelial cells exposed to hyperosmolarity．Am J Physiol Regul Integr Comp Physiol 2002；279：R1580－9．


[^0]:    ＊大阪医科大学第 2 解剖学教室
    ＊＊大阪薬科大学臨床薬剤学教室

