両室ペーシングによる心臓再同期療法

松 田 直 樹＊

はじめに

ACE 阻害薬や β 遮断薬の導入により，慢性心不全患者の QOL と予後は大きく改善したが，今なお薬物治療に反応しない重症例が数多く存在し，そ の予後は極めて不良である。最重症例には，心臓移植の選択肢があるが，ドナーの少ない我が国で は現実的な治療とは言い難い。一方，重症慢性心不全患者の心電図では，しばしば PQ 時間の延長 や QRS 幅の拡大といった房室間あるいは心室内の伝導障害の所見を目にする。前者は不適切な房室同期，後者は心室の非協調的収縮を招き，いずれ も血行動態に悪影響を及ぼすことが知られている。近年，このような心臓同期不全を是正するための ペーシング治療が大きな注目を集めている。本稿 では，心臟再同期療法と呼ばれるこの新たな心不全治療について解説する

伝導障害がもたらす血行動態の不利

慢性心不全患者の心電図にはしばしば QRS 幅の拡大を認め，重症例では $30 \sim 50 \%$ の例が何らかの心室内伝導障害を有している。心室内伝導障害は，慢性心不全の予後規定因子のひとつであり，QRS幅の拡大と患者の予後は相関する（図1）${ }^{1)}$ 。また，慢性心不全患者における左脚ブロックの存在は，心不全の重症度とは独立した予後規定因子であり，左脚ブロックのない例に比べ死亡の相対危険度は 1.7 倍になることが報告されている ${ }^{2)}$ ，

これまで伝導障害の存在は，心筋の広範なダメ ージを反映するマーカーと考えられ，それ故予後 と関連すると解釈されてきた。しかし近年，伝導障害それ自体が血行動態に大きな不利益をもたら

[^0]し，心不全の重症化や予後に直接影響することが明らかとなった。
左脚ブロックのような左室の伝導障害が存在す ると，左室の中隔側は早期に興奮するが，伝導が遅れる側壁側では収縮の開始も遅れ，中隔と側壁 では収縮のタイミングにずれが生じる。これを心室同期不全（ventricular dyssynchrony）という。心室 はその壁が同時に収縮することで効率よく血液を駆出しているわけであり，それがずれると駆出の効率が落ち，心拍出量，血压は低下する。また，左室両乳頭筋の収縮のずれは僧帽弁逆流を招き， QRS 幅が広いほど僧帽弁逆流時間は延長する。 ventricular dyssynchrony は収縮終了のばらつきを もたらし，左室拡張期流入の開始が遅れ，有効な左室流入が得られなくなる。
一方，拡張型心筋症などの慢性心不全患者には， しばしば 1 度房室ブロックを認め，時に PQ 時間 は 300 msec を越える。1度房室ブロックにより心室の収縮が遅れると，それにつれて心室拡張の開

図1 慢性心不全患者の QRS 幅と予後の関係 （文献1より引用）

始も遅れ，結果的には心室拡張期流入時間が短縮 する．また PQ 時間が延長すると，心房からの拡張期左室流入が終了しても，僧帽弁が閉鎖しない時間が生じ，このとき拡張期であるにも拘らず僧帽弁逆流が生じる。これらにより左房圧は上昇し心拍出量は減少する。特に心機能低下例ではその影響は大きく，心不全の増悪因子となる。

心臓再同期療法（CRT）とは

A．房室再同期ペーシング

心不全に対する再同期ペーシング療法は，まず房室伝導時間の是正から始まった。既述の如く， 1度房室ブロックは，心室拡張期流入時間の短縮と拡張期僧帽弁逆流を招く。1990年前半，PQ 時間 の延長を認める心不全患者に DDD あるいはVDD ペーシングを行い，AV delayを短縮させる試みが行われた．Hochleitner らは，心臓移植の適応があ り高度房室ブロックのない 16 例の拡張型心筋症に DDD ペースメーカーを植込み，AV 間隔 100 msec でペーシングを継続した結果，心拍出量，肺動脈楔入圧，自覚症状の改善を認め，全例，強心剤の持続点滴から離脱できたと報告した3）．しかし，そ の後同様の検討を行った長期観察の報告は，必ず しもこれを支持するものではなく，本法はすべて の症例に有効な方法ではないことが明らかとなっ $た^{4}$ 。その理由として，従来のペースメーカーでは， AV 間隔を短縮するには右室心尖部ペーシングを行 わなければならず，AV 間隔短縮による血行動態改善のメリットが，自己の正常 QRS 幅から dyssyn－ chrony を伴う wide QRSになることによる血行動態悪化のデメリットに相殺されてしまった可能性 が考えられている。

B．両室ペーシング

1996年，Cazeau らは，心臓移植が必要な心機能 でありながら，何らかの理由で適応から外れた 8例の心室内伝導障害を有する重症心不全例に対し，両心室同時ペーシングを行った結果，心係数の有意な増大と肺動脈楔入圧の有意な減少が得られ，4例でNYHA IV 度から II 度に改善したことを報告 した ${ }^{5)}$ 。

心室内伝導障害に伴う ventricular dyssynchrony に対し，心室を複数個所から同時ペーシングすれ ば，収縮の同期性が高まり，血行動態の改善が得

られるだろう．そのような発想から両室ペーシン グは生まれた。右室リード以外に，左室の側壁側 にもリードを留置し，左室を右室側（中隔側）から と自由壁側からちょうど挟み込むように同時ペー シングする．両室ペーシングの結果，左室収縮の協調性は回復し，急性効果として，左室収縮能の指標である最大 $\mathrm{dp} / \mathrm{dt}$ は $10 \sim 20 \%$ 増加し，多くの例で収縮期血圧と脈圧の有意な増加がみられる。著効例では心拍出量が 30% 以上増加する。肺動脈楔入圧は約 20% 低下する。等容性収縮時間が短縮 し，かつ左室の収縮終了が同期することにより，拡張期左室流入時間は延長し左房圧は低下する。症例によっては僧帽弁逆流の著明な減少が認めら れる。

両室ペーシングによる血行動態の改善は，房室同期を適切に設定することにより最大限に発揮さ れる。このような，両室ペーシングと至適AV間隔の設定を組み合わせた房室同期両室ペーシング を心臓再同期療法（Cardiac resynchronization ther－ apy：CRT）と呼ぶ．CRTの継続により左室容量は $10 \sim 15 \%$ 減少し，いわゆる左室の逆リモデリング が達成される。図2に，逆リモデリングの機序を示 す ${ }^{6}$ 。

CRT は，左室ポンプ機能の効率を改善するため，陽性変力作用を有しながら，心筋酸素消費の増加 を伴わない。このことは，CRT が強心剤とは異な り「やせ馬にムチ打つ」治療ではないことを示して いる。

CRT の実際

CRT 用のペースメーカー本体は，従来の DDD ペースメーカーを改良したもので，心房用と 2 つ の心室用コネクターをもつ。左室リードは当初，開胸により心外膜に留置した。その後，冠静脈洞 から冠静脈分枝にリードを挿入し左室を心外膜ペ ーシングする画期的な経静脈アプローチが行われ るようになった（図3）。目標の冠静脈に確実にリー ドを留置するには，専用のリードシステムと術者 の熟練が必要となる。これまでのスタイレット方式のリードシステムでは，リード留置成功率は 90% 程度であったが，ガイドワイヤ方式の導入に より 97% 以上となる。左室リード留置に関する合併症として，冠静脈穿孔，冠静脈本幹閉塞，本幹

図2 CRT が左室逆リモデリングをもたらす機序（文献 6 より引用）

図3 CRT の経静脈的リードシステム

解離，横隔神経刺激などがあり，最も重篤な冠静脈穿孔の頻度は 0.5 ～数 $\%$ と言われており，十分な注意が必要である。また，冠静脈からの心外膜ペ ーシングではペーシング閾値は $1 \sim 3 V$ と高く大容量の電池を必要とする。

左室の至適ペーシング部位は個々の症例により異なるが，一般に左室中部の側壁～後壁で最も効果が期待できる。その理由は必ずしも明らかでは ないが，左室内伝導障害の多くは同部位が最も収縮が遅れる場所であることや，同部位からのペー

シングが乳頭筋を早期収縮させ僧帽弁逆流が減少 することなどが考えられている。同部位をペーシ ングするためにリードを挿入する冠静脈は側壁静脈または後側壁静脈である。ただし，仮に至適ペ ーシングがわかったとしても，リードを挿入でき る冠静脈は $1 \sim 2$ 本しかなく，経静脈アプローチの限界が指摘されている。一部の施設では，胸腔鏡 を用いた心筋電極留置が試みられている。

ペーシングの設定は，洞調律例では，モードを DDD あるいはVDD とし，至適 AV delay の設定を

行う。徐脈でない心房細動に適用する場合は，自己の conducted wide QRS を封じる目的で房室接合部のカテーテルアブレーションが行われる。

CRT の臨床試験と慢性効果

Cazeau の報告 ${ }^{5}$ ）以来，心室内伝導障害を有する重症心不全患者に対し，多くの臨床試験が行われ， CRT の継続は，重症心不全患者の自覚症状，運動耐容能，QOL，心エコー所見，心不全入院回数な どの有意な改善をもたらすことが明らかにされた （表1）${ }^{7 \sim 16)}$ 。

北米で行われた MIRACLE（Multicenter InSync Randomized Clinical Evaluation）試験は，CRT の有効性を決定付けランドマークとなった研究である。 QRS 幅 130 msec 以上の NYHA III／IV 度の重症心不全患者 453 例を，CRT 群と非ペーシング群に二重盲検無作為割付し，有効性を評価した ${ }^{7,8)}$ 。6 力月後，非ペーシング群で NYHA 分類が 1 ランク改善した のは 32% ， 2 ランク以上改善したのが 6% であった のに対し，CRT群ではそれぞれ $52 \%, 16 \%$ と後者 で有意に改善例が多かった。CRT 群では QOL ス コアも有意に改善し， 6 分間歩行距離は 39 m 延長 し，左室駆出率は 4.6% 増加した。 心エコー上，左室拡張末期ならびに収縮末期容量，僧帽弁逆流は有意に減少した。また，死亡と心不全増悪による入院をイベントとした場合，CRT はその危険を 40% 減少させた。

これまで本治療による生命予後改善効果は確認 されていなかったが，2005年に発表されたCARE－ HF（Cardiac Resynchronization－Heart Failure）試験は CRT の生命予後改善効果を証明した ${ }^{9)}$ 。 QRS 幅 120 msec 以上（ $120 \sim 149 \mathrm{msec}$ の症例はエコーで ventricular dyssynchrony があることを確認， 150 msec 以上の症例は無条件），左室駆出率 35% 以下，左室拡張末期径 $30 \mathrm{~mm} /$ 身長（m）を満たす NYHA III／IV 度の慢性心不全患者 813 例が，CRT 群と薬物治療群に割付けられ，平均 29 力月追跡された。 その結果 CRT は薬物に比し，死亡率を 36% ，死亡 または心血管事故による入院の危険を 37% 有意に減少させた（図4）。

このほか，CRTの継続は，単に心機能や血行動態を変化させるだけでなく，心筋のストレイン，心筋糖代謝，冠血流予備能，の左室内不均一を改善

し，心筋エネルギー効率を向上させることも指摘 されている。

CRT の適応

米国ならびに我が国のペースメーカー植込みに関するガイドラインでは，MIRACLE 試験の対象 がそのまま，CRT の適応として挙げられている． すなわち，虚血性，非虚血性を問わず薬物治療に よっても NYHA III 度または IV 度から改善しない左室駆出率 35% 以下の重症心不全で，QRS 幅が 130 msec 以上の心室内伝導障害を有する例である。 MIRACLE 試験の結果からみれば，この適応で植込みを行った場合に 7 割弱の患者で効果が期待で きる一方で， 3 割強の例は無効ということになる． MIRACLE 試験の副解析では植込み前の QRS 幅と CRT の慢性効果は相関せず，QRS 幅からの患者選択には限界があることが指摘され始めている。

文字通り本治療は心室収縮の再同期を狙った治療であることから，心室の dyssynchrony が高度で あるほど効果が期待できる。そこで現在では， QRS 幅ではなく，心室の dyssynchrony を直接評価 し適応を決定しようとする試みがなされている。心室の収縮様式を評価する方法として，エコー， MRI，核医学検査が挙げられ，なかでも最近，組織ドプラエコーの有用性が多数報告されている。本法により心室局所間の収縮のタイミングのずれ の定量評価や，駆出が終わってもまだ収縮が終了 していない部位の同定が可能となり，左室内 dyssynchrony の程度が大きい症例ほど CRT による左室機能改善や左室逆リモデリング効果が大きい ことがわかってきた ${ }^{17,18)}$ 。また，QRS幅が 120 msec以下の慢性心不全患者でも約半数に左室内 dyssyn－ chrony が存在することが指摘され，それらに対す るCRT の慢性効果は，QRS 幅が 120 msec 以上の例と何ら変わりがないことも報告されている ${ }^{19)}$ ． したがって，本治療の適応決定には今後，QRS 幅 よりも心室の dyssynchrony の有無と程度が重要視 されていくと思われる．

またガイドラインでは，NYHA III 度またはIV度の中～重症心不全が本治療の対象であるが，軽症例に対する成績も出始めており，NYHA II 度へ の適応拡大は今後の課題といえよう。
表1 CRTに関する主な臨床試験とその成績

	例数	QRS 幅 （msec）	NYHA 分類左室駆出膟	試験デザイン	結 果							
					6 分間歩行 距離	最大酸素掑收量	QOL	NYHA 分類	左室拡張末期径 $/$ 容積	$\begin{gathered} \text { 左室 } \\ \text { 馸出率 } \end{gathered}$	心不全人院	死亡率
MUSTIC	48	$\geqq 150$	$\begin{gathered} \text { III } \\ \leqq 35 \% \end{gathered}$	交差試験（6力月） 長期追跡	延長	増加	改善	改善	縮小	木評価	減少	木評価
PATH－CHF	41	$\geqq 120$	$\begin{aligned} & \text { III/IV } \\ & \leqq 35 \% \end{aligned}$	交差試験（3力月） \downarrow長期追跡	延長	増加	改善	改善	术評価	木評価	木評価	木評価
MIRACLE	453	$\geqq 130$	$\begin{aligned} & \text { III/IV } \\ & \leqq 35 \% \end{aligned}$	無作為割付け	延長	増加	改善	改善	縮小	増加	減少	$\begin{aligned} & \text { 有意差 } \\ & \text { なし } \end{aligned}$
CONTAK－CD	490	$\geqq 120$	$\begin{aligned} & \mathrm{II} \sim \mathrm{IV} \\ & \leqq 35 \% \end{aligned}$	交差試験（6力月） \downarrow長期追跡	延長	増加	有意差 なし＊	有意差 なし＊	縮小	増加	減少傾向	減少傾向
MIRACLE－ICD	369	$\geqq 130$	$\begin{aligned} & \text { III/IV } \\ & \leqq 35 \% \end{aligned}$	無作為割付け	有意差 なし	増加	改善	改善	有意差 なし	$\begin{aligned} & \text { 有意差 } \\ & \text { なし } \end{aligned}$	有意差 なし	有意差 なし
COMPANION	1520	$\geqq 120$	$\begin{aligned} & \text { III/IV } \\ & \leqq 35 \% \end{aligned}$	無作為割付け	延長	末詊価	改善	改善	未詊価	末詊価	減少	減少傾向
CARE－HF	813	$\geqq 120$	$\begin{aligned} & \text { III/IV } \\ & \leqq 35 \% \end{aligned}$	無作為割付け	未詊価	未評価	改善	改善	末詊価	増加	減少	減少
MIRACLE－ICD II	210	$\geqq 130$	$\begin{gathered} \text { II } \\ \leqq 35 \% \end{gathered}$	無作為割付け	有意养 なし	有意差 なし	有意养 なし	改善	縮小	増加	末評価	末評価

＊NYHA III／IVに限れば有意に改善

図4 CARE－HF 試験の結果（文献 9 より引用）

図5 COMPANION 試験の結果（文献 10 より引用）

除細動機能つき CRT デバイス

心不全患者の死因の 4 割は突然死であることか ら，予後改善には心不全死のみならず突然死を予防することが重要である。その突然死のほとんど は持続性心室頻拍，心室細動によると考えられて おり，植込み型除細動器（Implantable Cardioverter Defibrillator：ICD）は，これら致死的不整脈による突然死をほぼ完全に予防する。欧米では，ICD の機能を併せ持つ両室ペースメーカー（CRT－D）が臨床使用されている。COMPANION（Comparison of Medical Therapy，Pacing，and Defibrillation in Heart Failure）試験は，薬剤抵抗性の NYHA III または IV度，QRS 幅 120 msec 以上，左室駆出率 35% 以下， かつ従来の ICD 植込み適応でない 1,520 症例を，薬物治療群，CRT 群，CRT－D 群の3群に割付け，予後を比較した大規模無作為割付け試験である ${ }^{10)}$ 。植込み 12 力月の時点で，CRT－D は薬物群に比し，

その死亡率を有意に 36% 減少させた（図5）。 すでに，欧米では両室ペーシングデバイスの主流は CRT－D であり，我が国への早期導入が待たれるところで ある．

文 献

1）Gottipaty VK，Krelis SP，Lu F，et al：The resting electro－ cardiogram provides a sensitive and inexpensive marker of prognosis in patients with chronic congestive heart failure．J Am Coll Cardiol 1999； 33 （suppl）：145A．
2）Baldasseroni S ，Opasich C ，Gorini M ，et al：Left bundle－ branch block is associated with increased 1－year sud－ den and total mortality rate in 5517 outpatients with congestive heart failure：a report from the Italian net－ work on congestive heart failure．Am Heart J 2002； 143：398－405．
3）Hochleitner M，Hortnagl $\mathrm{H}, \mathrm{Ng} \mathrm{CK}$ ，et al：Usefulness of physiologic dual－chamber pacing in drug－resistant idio－ pathic dilated cardiomyopathy．Am J Cardiol 1990；66： 198－202．
4）Gold MR，Feliciano Z，Gottlieb SS，et al：Dual－chamber
pacing with a short atrioventricular delay in congestive heart failure：a randomized study．J Am Coll Cardiol 1995；26：967－73．
5）Cazeau S，Ritter P，Lazarus A，et al：Multisite pacing for end－stage heart failure：early experience．Pacing Clin Electrophysiol 1996；19（11 Pt 2）：1748－57．
6）Yu CM，Chau E，Sanderson JE，et al：Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying re－ gional contraction after biventricular pacing therapy in heart failure．Circulation 2002；105：438－45．
7）Abraham WT，Fisher WG，Smith AL，et al：Cardiac re－ synchronization in chronic heart failure．N Engl J Med 2002；346：1845－53．
8）Sutton MG，Plappert T，Abraham WT，et al：Multicenter InSync Randomized Clinical Evaluation（MIRACLE） Study Group．Effect of cardiac resynchronization ther－ apy on left ventricular size and function in chronic heart failure．Circulation 2003；107：1985－90．
9）Cleland JG，Daubert JC，Erdmann E，et al：The effect of cardiac resynchronization on morbidity and mortality in heart failure．N Engl J Med 2005；352：1539－49．
10）Bristow MR，Saxon LA，Boehner J，et al：Cardiac resyn－ chronization therapy with or without an implantable de－ fibrillator in advanced chronic heart failure．N Engl J Med 2004；350：2140－50．
11）Cazeau S，Leclercq C，Lavergne T，et al：Effects of mul－ tisite biventricular pacing in patients with heart failure and intraventricular conduction delay．N Engl J Med 2001；344：873－80．
12）Linde C ，Leclercq C ，Rex S ，et al：Long－term benefits of biventricular pacing in congestive heart failure：results from the MUltisite STimulation in cardiomyopathy （MUSTIC）study．J Am Coll Cardiol 2002；40：111－8．
13）Auricchio A，Stellbrink C，Sack S，et al：Long－term
clinical effect of hemodynamically optimized cardiac re－ synchronization therapy in patients with heart failure and ventricular conduction delay．J Am Coll Cardiol 2002；39：2026－33．
14）Higgins SL，Hummel JD，Niazi IK，et al：Cardiac resyn－ chronization therapy for the treatment of heart failure in patients with intraventricular conduction delay and malignant ventricular tachyarrhythmias．J Am Coll Car－ diol 2003；42：1454－9．
15）Young JB，Abraham WT，Smith AL，et al：Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure：the MIRACLE ICD Trial．JAMA 2003；289：2685－94．
16）Abraham WT，Young JB，Leon AR，et al：Effects of car－ diac resynchronization on disease progression in pa－ tients with left ventricular systolic dysfunction，an indi－ cation for an implantable cardioverter－defibrillator，and mildly symptomatic chronic heart failure．Circulation 2004；110：2864－8．
17）Sogaard P，Egeblad H，Kim WY，et al：Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long－term cardiac resynchronization therapy．J Am Coll Cardiol 2002；40：723－30．
18）Yu CM，Fung JW，Zhang Q，et al：Tissue Doppler imag－ ing is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after car－ diac resynchronization therapy．Circulation 2004；110： 66－73．
19）Achilli A，Sassara M，Ficili S，et al：Long－term effec－ tiveness of cardiac resynchronization therapy in pa－ tients with refractory heart failure and＂narrow＂QRS．J Am Coll Cardiol 2003；42：2117－24．

[^0]: ＊東京女子医科大学循環器内科

