総 説

アンジオテンシン II タイプ 1 受容体の発現と機能

市 来 俊 弘＊

はじめに
アンジオテンシン II（AngII）の二つの受容体（タ イプ1レセプター：AT1 とタイプ2レセプター： AT2）を区別する特異的な拮抗薬の開発と，それぞ れの遺伝子のクローニングにより，レニン・アン ジオテンシン系の研究は大きく進歩した ${ }^{1)}$ 。また多 くの大規模臨床試験の結果から，アンジオテンシ ン変換酵素（ACE）阻害薬に降圧作用以上の心血管保護作用があることが明らかとなってきた。ACE阻害薬に引き続きAT1拮抗薬，いわゆるARBが臨床使用され，心不全などにおけるその有効性を示 すエビデンスが徐々に蓄積されてきた。その結果， レニン・アンジオテンシン系の阻害薬が降圧薬と してのみならず，広く循環器疾患治療薬として使用されるようになってきた。

本稿では，ARBが作用する受容体であるAT1 の構造，信号伝達そして発現調節について概説した。

AngII 受容体の構造

現在までに遺伝子が単離されている AngII 受容体はAT1 とAT2 のみである。それぞれ 359 個 ${ }^{2}$（図 1）と 363 個 ${ }^{3}$ のアミノ酸からなる 7 回膜貫通型の受容体で，三量体 G 蛋白と共役していると考えら れている。

AT1 はマウスやラットでは 2 つのアイソフォー ムが別々の遺伝子上に存在しており，ATla および AT1bと呼ばれている。ATlaとAT1bは発現する組織分布が異なるが，リガンドや拮抗薬の結合， あるいは細胞内シグナル伝達などを薬理学的には

[^0]区別できない。ヒトのAT1 は第3エクソンの alternative splicing により 2 種類の受容体の存在が報告されている ${ }^{4)}$ 。AT1 がいわゆる ARB が結合す る受容体であり，Dup753（Losartan）や Candesartan， Valsartan などが受容体特異的拮抗薬として臨床使用されている．表1にAT2 と比較したAT1 の特徴 をまとめた．

AT1 のシグナリング

A．G 蛋白共役

AT1 は三量体 G 蛋白のうち Gq ， Gi / o ， $\mathrm{G} 12 / 13$ に共役していると報告されている。一般的に AngII は Gq あるいは G12 を介して phospholipase C（PLC） β を活性化し，活性化された PLC はフォスファチ ジルイノシトール2リン酸を分解し，イノシトー ル 3 リン酸 $\left(\mathrm{IP}_{3}\right)$ とジアシルグリセロール (DG) を生じると考えられている。前者は小胞体からのカ ルシウム放出を誘導し，後者は Protein kinase C （PKC）を活性化する．ところがチロシンリン酸化 によって活性化される PLC γ が AT1 を介して活性化されるとする報告もある ${ }^{5}$ 。AngII は G $\alpha 12 / 13$ を介して，L 型カルシウムチャンネルを活性化する． この G $\alpha_{12 / 13}$ との共役は，低分子量 G 蛋白である Rho およびその下流の Rho－kinase 系を活性化する Rho guanine exchange factor（GEF）を活性化する信号伝達系としても重要である ${ }^{6}$ ．

B．チロシンリン酸化

AngII の刺激は三量体 G 蛋白の活性化以外に一連の蛋白のチロシンリン酸化を誘導する。前述の $\mathrm{PLC} \gamma$ 以外に，AngII によって $\mathrm{pp} 60^{\mathrm{C}-\mathrm{SRC}}, \mathrm{pp} 125^{\mathrm{FAK}}$ ， JAK2，STATs，TYK2 などのチロシンリン酸化が生じる。

図1 AT1受容体のアミノ酸配列と予想される構造 アミノ酸名は一文字の略号で示してある。

表1 AT1 と AT2 の特徴

	AT1	AT2
主要発現組織	血管平滑笳，肝臓，腎臓副腎皮質，心臓，脳	胎児の腎，皮下組織，舌副腎髄質，子宮，脳
特異的拮抗剤	ロサルタン，カンデサルタン，バルサ ルタン，オルメサルタンなど	PD123319，CGP42112A（高濃度）
染色体	$\begin{aligned} & \text { ヒト-第3, } \\ & \text { ラット-第17(ATla) } \\ & \text { ラット-第2(AT1b) } \end{aligned}$	X 染色体
アミノ酸	359	363
細胞内信号伝達	Gq，Gi／o，G12／13 PLC 活性化 MAPK 活性化 JAK－STAT 系活性化 EGF－R の transactivation	Gi フォスファターゼ活性化 cGMP 系活性化？
主な生理作用	血管収縮 アルドステロン分泌 抗利尿作用 平滑筋細胞増殖•肥大，心筋肥大 サイトカイン，細胞外基質産生促進	血管拡張 アポトーシス誘導 ナトリウム利尿？ 細胞外基質産生抑制

PLC γ の活性化はAT1受容体の細胞内 C 端に結合することによって生じると考えられている。 JAK2 も同様にC端に結合するとされる7），しかし どのような機序によって結合し，チロシンリン酸化を受けるかは明らかではない。前述の PLC γ の活性化には c－Src が重要と考えられている ${ }^{8)}$ 。

C．上皮細胞成長因子受容体の transactivation と mitogen－activated protein kinase

近年，リゾフォスファチジン酸やトロンビンな どの 7 回膜貫通型受容体のアゴニストが上皮細胞成長因子受容体（epidermal growth factor receptor： EGF－R）を transactivationすることが明らかとなっ てきた ${ }^{9)}$ 。これらのアゴニストは細胞膜の matrix metalloproteinase（MMP）を活性化し，やはり細胞膜に存在する proheparin－binding epidermal growth factor（proHB－EGF）を膜から切り出す。その結果遊離した HB－EGF がオートクラインあるいはパラク ライン的に EGF－R を活性化すると考えられてい $る^{10)}$ ．AngIIについても同様の報告がある ${ }^{111}$ 。血管平滑筋細胞において AngII は AT1 を介してMMP依存性に EGF－Rを transactivationする。この過程 には細胞内 Ca^{2+} の上昇や $\mathrm{c}-\mathrm{Src}$ の活性化，活性酸素の産生が必要と考えられている。この活性化さ れた EGF－R の下流で extracellular signal－regulated protein kinase（ERK）と p38 mitogen－activated protein kinase（MAPK）が活性化されると考えられている。

D．NADPH oxidase と活性酸素

エモリー大学の Griendling らは平滑筋細胞を AngII で刺激すると，スーパーオキサイドが産生さ れると報告した ${ }^{12)}$ 。以来，AngIIによって産生され る活性酸素が心血管系に及ぼす作用について精力的に研究されるようになった。細胞にはミトコン ドリアやxanthine oxidase などの活性酸素種の発生源があるが，AngII による活性酸素の産生はdi－ phenylene iodonium と呼ばれる flavoprotein の阻害薬でブロックされるため，NAD $(\mathrm{P}) \mathrm{H}$ oxidaseによ るものと考えられている。NAD（P）H oxidase はい くつかのサブユニットからなる蛋白で，膜に結合 したチトクローム b 558 と細胞質に存在する $\mathrm{p} 47^{\mathrm{phox}}$ ， p67phox および低分子量 G 蛋白である Rac1 より構成される。チトクローム b558はNADPH から分子状酸素へ電子を伝達する最後の担体として働き， $\mathrm{p} 22^{\text {phox }}$ と糖蛋白の $\mathrm{gp} 91^{\text {phox }}$（現在は Nox2）から構成

される．内皮細胞ではこれらの 5 つのサブユニッ トがすべて発現しているとされているが，ラット平滑筋細胞では $\mathrm{p} 67^{\text {phox }}$ と $\mathrm{gp} 91^{\text {phox }}$ の発現はほとん ど認められない ${ }^{133}$ 。その後 $\mathrm{gp} 91^{\text {phox }}$ と 56% の相同性を示す Nox1 がクローニングされ ${ }^{14)}$ ，平滑筋細胞 で発現していることから，平滑筋細胞のチトクロ ーム b558 は $\mathrm{p} 22^{\text {phox }}$ と Nox1 とから構成されている と考えられる。同じホモログの一つであるNox4 は平滑筋細胞および内皮細胞ともに多く発現して おり，血管における活性酸素の産生に関与してい る可能性が示唆されている。
AngII によって産生された活性酸素は，血圧の上昇，内皮依存性血管驰緩反応の減弱などをもたら す。これはスーパーオキサイドがすみやかに一酸化窒素（NO）と反応し，NO を不活化することによ るものと考えられている。また活性酸素はいわゆ るレドックス感受性の転写因子である AP－1 や NF－ κ B を活性化してサイトカインや接着因子の発現，平滑筋細胞の増殖，凝固系の元進などを促進し動脈硬化の進展をもたらすと考えられる（図2）。

AngII によるNAD（P）H oxidase の活性化の機序 は明らかではないが，Touyz らはフォスフォリパ ーゼ D（PLD）によって産生されるフォスファチジ ン酸が重要であることを報告している ${ }^{15)}$ 。

遺伝子発現と生理学的および病態生理学的役割

A．AT1 の組織分布

AT1aとAT1bはリガンド結合特性やシグナル伝達においては差が認められないが，その遺伝子発現調節と組織分布は異なることが示されている。

AT1aは主に心臓，腎臓，大動脈，肝臓，脳など に発現している。平滑筋細胞はAT1aを発現して いる。一方 AT1b は副腎と脳下垂体に主に発現し ている。
副腎皮質はAT1aとAT1bを発現しており，副腎髄質はATlaを発現している。腎臓ではAT1bはメ サンジウム細胞と傍系球体細胞においてのみ発現 している。主な臓器におけるAT1受容体中の AT1aの発現比率は，肝臓では 100% ，肺では 85% ，腎臓では 73% ，副腎では 48% ，脳下垂体では 15% と報告されている。
脳のAT1 は血圧や飲水行動，食塩椇取などに関与している．胶内には組織RAS があり，局所的に

図2 アンジオテンシン II によって産生される活性酸素が血管系に及ぼす影響
活性酸素が活性化する蛋白リン酸化酵素，転写因子，蛋白などを示す。
PI3－K：phosphatidyl inositol 3－kinase，HIF－1 α ：hypoxia inducible factor，VEGF：vascular endothelial growth factor， eNOS：endothelial nitric oxide synthase．その他の略語は本文中を参照．

産生された AngIIと循環血液中の AngIIの，両方 の影響をうける．脳血液関門のため循環血液中の AngII は，脳血液関門のない脳室周囲器官を介して作用すると考えられている。この領域にはAT1 が豊富に発現している。視床下部の傍側脳室核にも AT1 の発現が多く，この領域は脳下垂体前葉のホ ルモン分泌，心血管の自律神経制御に関与すると考えられている。脳内のAT1 の多くはAT1a であ るが脳下垂体前葉は主に AT1b が発現しており， プロラクチンやACTH の分泌を制御すると考えら れている。また最近，脳内における AT1a が主に昇圧反応に関与し，AT1bが飲水行動に関与すると いう報告がなされている ${ }^{16)}$ 。

心臓では心笳細胞と心臓線維芽細胞の両方に AT1 の発現が認められている．AngII は心筋細胞に直接作用し心筋の肥大を生じる。線維芽細胞にお いて AngII は増殖を促進し，コラーゲンなどの細胞外基質の産生を誘導する。これらにより心臓の肥大に重要な役割を果たしている。また，心筋細胞を伸展すると心筋細胞自体より AngII が分泌さ れ，オートクライン的に心筋細胞の肥大に関わる可能性が示されている ${ }^{17)}$ 。心筋梗塞後に生じる左心室の拡大，いわゆる心室リモデリングにおいて も AngII は重要な役割を果たすと考えられている。腎臓におけるAT1は采球体輸出細動脈やメサン

ジウム細胞，傍系球体細胞，近位尿細管などに多 く発現している。腎臓において AngII はAT1 を介 して，腎血管抵抗を増大させ，腎血漿流量を減少 させる．同時に少球体輸出細動脈を収縮させるた め，糸球体毛細血管圧が上昇し糸球体ろ過率は維持される。尿細管ではナトリウムの再吸収を増加 させる．また AngII は，メサンジウム細胞や栄球体内皮細胞を増殖させ，メサンジウム細胞からの コラーゲンやフィブロネクチンの産生を増加させ るので，腎の増殖性変化や線維化にも関与すると されている。

血管における AngII は血管を収縮させるのみな らず，血管平滑筋細胞の増殖と肥大を誘導する。 しかし培養平滑筋細胞を得た血管床によっては， AngII によって肥大は生じるが，増殖は生じないと する報告がある。In vivo においては中膜平滑筋細胞の肥大に関与すると考えられている。バルーン による血管傷害後の新生内膜の形成は中膜平滑筋細胞の増殖と遊走によって生じると考えられてい るが，この過程においてもAT1 が重要と考えられ ている．血管平滑筋細胞において AngII はサイト カイン，増殖因子や細胞外基質などの産生を誘導 する。

AngII は，副腎皮質ではおもにアルドステロンの分泌を制御し，これはAT1bを介すると考えられて

いる．髄質のAT1 はカテコラミンの産生•分泌を促進する。最近 AT2 がこの作用に拮抗し，カテコ ラミンの産生•分泌を抑制することが報告された ${ }^{18)}$ 。

B．AT1 の遺伝子発現制御

AT1a 遺伝子のプロモーター領域にはAP1， glucocorticoid response element（GRE），SP－1，NF－ κB ，cyclic AMP response element（CRE）などの転写調節領域が認められる。培養血管平滑筋細胞は ATlaを強く発現し，AT1 の発現制御に関して多く の研究がなされている。グルココルチコイドは， 3力所に認められる GRE の一つを介して AT1 の発現を増加させるとされ，Cushing 症候群における血圧上昇における AT1 の関与が示唆されている。 しかしながら，他の転写調節領域の機能について は十分には解析されていない。その他，IL－1 α や LDL は ATla の発現を増加させ，一酸化窒素は AT1a の発現を減少させると報告されている．IL－ 1α や LDL は動脈硬化を促進する因子であり，一酸化窒素はそれに拮抗すると考えられている。こ れらの因子の動脈硬化への影響と AT1 発現への影響が相関することは面白い現象であり，動脈硬化進展におけるAT1 の関与を示唆するデータとも考 えられる。高脂血症患者においては血小板のAT1 の発現量が増加しており，スタチンを投与して 4 週

間治療を行うと LDL のレベルには変化がなくとも AT1 の発現量や血管の AngIIに対する反応性が正常化すると報告されている ${ }^{19)}$ 。また AngII 自体は AT1 の発現を減少させる，いわゆるhomologous downregulation を生じる。我々は，この過程に ERK と活性酸素が関与することを報告した ${ }^{20)}$ 。血管平滑筋細胞における AT1a の発現を制御する物質について表2にまとめた。発現調節機構として は，転写レベルの調節と転写後の mRNA 安定性の変化による調節が報告されている（図3）。
AT1b 遺伝子のプロモーター領域には PEA3，SP－1

表2 血管平滑筋細胞の AT1 発現を制御する因子

増減	因子	機序
増加	$\mathrm{IL}-1 \alpha$	$?$
	LDL コレステロール	転写後調節
	インスリン	転写後調節
	NaCl	転写後調節
	グルココルチコイド	転写調節
減少	一酸化窒素	転写調節
	レチノイン酸	転写調節
	PPAR γ リガンド	転写調節
	甲状腺ホルモン	転写おおよひ転写後調節
	アンジオテンシン II	転写後調節
	エストロゲン	転写後調節
	スタチン	転写調節

AT1 の発現は，遺伝子プロモーターの転写活性（Transcriptional regulation），翻訳レベルでの制御（Translational con－ trol）と mRNA の安定性（mRNA stability or posttranscriptional regulation）により調節されていると報告されている．

などがあり AT1aとは異なった遺伝子発現制御を受けている。例えば，エストロゲンは脳下垂体の AT1aには影響を与えないが AT1bの発現を減少さ せる。

ノックアウトマウスとトランスジェニックマウス

現在，遺伝子が同定されているレニン・アンジ オテンシン系のすべての構成要素，つまりアンジ オテンシノーゲン，レニン，ACE，ACE2，AT1a， AT1b そしてAT2 のノックアウトマウスが作成さ れている。AT1aノックアウトマウスでは約 20 mmHg の血圧低下を認めたが，ACE やアンジオ テンシノーゲンノックアウトマウスに認められた ような明らかな腎臓の形態異常は認められていな い。AT1bノックアウトマウスでは基礎血圧も変化 なく，腎病変も認められなかった。AT1aノックア ウトマウスにおいて，静脈内投与された AngII に対する昇圧反応が認められないことから，当初 AT1b は血圧制御にはあまり関与しないものと考え られた。ところがその後，AT1aノックアウトマウ スに ACE 阻害薬を投与すると血圧が若干低下し， さらにその状態において AngII を投与すると，わ ずかではあるが濃度依存性に血圧の上昇が認めら れた。このことから少なくともAT1a がない状態 においてはAT1b も血圧制御に関与することが証明された ${ }^{21)}$ 。AT1abダブルノックアウトマウスで は AT1aノックアウトマウスよりさらに血圧が低下することもAT1bの血圧制御における役割を支持するものと考えられる。一方，明らかな腎病変 はAT1ab ダブルノックアウトマウスにのみ認めら れることから腎臓の発生においてはAT1a と AT1b は相補的であると考えられる。

心臓特異的にAT1を過剰発現するトランスジェ ニックマウスは心筋の肥大とともに房室ブロック を生じ生後 1 週間のうちに死亡すると報告された ${ }^{22)}$ 。 その後，異なった種のマウスを用いたAT1 トラン スジェニックマウスにおいて心肥大を生じるが生存しうることが報告された。

おわ りに

アンジオテンシン変換酵素阻害薬やARB は心血管病や糖尿病の治療に有用であることが示され ているが，残念ながらその効果は限定的である。

アンジオテンシン II が心血管病変の形成に深くか かわっていることは明らかであり，その信号伝達経路の解析から新たな治療標的が見つかれば画期的な治療方法の開発にもつながると期待される。

文 献

1）de Gasparo M，Catt KJ，Inagami T，et al：International union of pharmacology．XXIII．The angiotensin II recep－ tors．Pharmacol Rev 2000；52：415－72．
2）Sasaki K，Yamano Y，Bardhan S，et al：Cloning and ex－ pression of a complementary DNA encoding a bovine adrenal angiotensin II type－1 receptor．Nature 1991； 351：230－3．
3）Kambayashi Y ，Bardhan S，Takahashi K，et al：Molecular cloning of a novel angiotensin II receptor isoform in－ volved in phosphotyrosine phosphatase inhibition．J Biol Chem 1993；268：24543－6．
4）Curnow KM，Pascoe L，Davies E，et al：Alternatively spliced human type 1 angiotensin II receptor mRNAs are translated at different efficiencies and encode two receptor isoforms．Mol Endocrinol 1995；9：1250－62．
5）Marrero MB，Paxton WG，Duff JL，et al：Angiotensin II stimulates tyrosine phosphorylation of phospholipase C－gamma 1 in vascular smooth muscle cells．J Biol Chem 1994；269：10935－9．
6）Gohla A，Schultz G，Offermanns S：Role for $\mathrm{G}_{12} / \mathrm{G}_{13}$ in agonist－induced vascular smooth muscle cell contrac－ tion．Circ Res 2000；87：221－7．
7）Ali MS，Sayeski PP，Dirksen LB，et al：Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angio－ tensin II AT1 receptor．J Biol Chem 1997；272：23382－8．
8）Ushio－Fukai M，Griendling KK，Akers M，et al：Tempo－ ral dispersion of activation of phospholipase C－betal and－gamma isoforms by angiotensin II in vascular smooth muscle cells．Role of alphaq／11，alpha12，and beta gamma G protein subunits．J Biol Chem 1998；273： 19772－7．
9）Daub H，Weiss FU，Wallasch C，et al：Role of transacti－ vation of the EGF receptor in signaling by G－protein－ coupled receptors．Nature 1996；379：557－60．
10）Prenzel N，Zwick E，Daub H，et al：EGF receptor trans－ activation by G－protein－coupled receptors requires metalloproteinase cleavage of proHB－EGF．Nature 1999；402：884－8．
11）Eguchi S，Numaguchi K，Iwasaki H，et al：Calcium－ dependent epidermal growth factor receptor transacti－ vation mediates the angiotensin II－induced mitogen－ activated protein kinase activation in vascular smooth muscle cells．J Biol Chem 1998；273：8890－6．
12）Griendling KK，Minieri CA，Ollerenshaw JD，et al：An－ giotensin II stimulates NADH and NADPH oxidase ac－
tivity in cultured vascular smooth muscle cells．Circ Res 1994；74：1141－8．
13）Griendling KK，Sorescu D，Ushio－Fukai M：NAD（P）H oxidase：role in cardiovascular biology and disease．Circ Res 2000；86：494－501．
14）Suh YA，Arnold RS，Lassegue B，et al：Cell transforma－ tion by the superoxide－generating oxidase Mox1．Na－ ture 1999；401：79－82．
15）Touyz RM，Schiffrin EL：Ang II－stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells．Hypertension．1999；34： 976－82．
16）Davisson RL，Oliverio MI，Coffman TM，et al：Diver－ gent functions of angiotensin II receptor isoforms in the brain．J Clin Invest 2000；106：103－6．
17）Sadoshima J，Xu Y，Slayter HS，et al：Autocrine release of angiotensin II mediates stretch－induced hypertrophy of cardiac myocytes in vitro．Cell 1993：75：977－84．
18）Takekoshi K，Ishii K，Shibuya S，et al：Angiotensin II type 2 receptor counter－regulates type 1 receptor in
catecholamine synthesis in cultured porcine adrenal medullary chromaffin cells．Hypertension 2002；39： 142－8．
19）Nickenig G，Baumer AT，Temur Y，et al：Statin－sensitive dysregulated AT1 receptor function and density in hy－ percholesterolemic men．Circulation 1999；100：2131－4．
20）Ichiki T，Takeda K，Tokunou T，et al：Reactive oxygen species－mediated homologous downregulation of angio－ tensin II type 1 receptor mRNA by angiotensin II．Hy－ pertension 2001；37：535－40．
21）Oliverio MI，Best CF，Kim HS，et al：Angiotensin II responses in AT1A receptor－deficient mice：a role for AT1B receptors in blood pressure regulation．Am J Physiol 1997；272：F515－20．
22）Hein L，Stevens ME，Barsh GS，et al：Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block．Proc Natl Acad Sci U S A 1997；94：6391－6．

[^0]: ＊九州大学大学院医学研究院循環器内科

