症例

肥大型心筋症の心エコードプラ法による心不全評価に注意を要した症例

湯 浅 敏 典＊，尾 辻 豊＊，鄭 忠 和＊

はじめに

心エコードプラ法を用いて僧帽弁流入血流波形 を評価することは，おおよその左室拡張能，左房圧を間接的に知ることができるため，心不全の評価に有用である。しかし症例によってはその評価 に注意を要し，心エコー上のその他の指標も参考 にし，総合的に判断する必要がある。今回我々は肥大型心筋症の心エコードプラ法による心不全評価に注意を要した症例を経験したので報告する。

症 例

患 者：68歳，男性，身長 169 cm ，体重 88 kg ．
主 訴：特記なし。
既往歴：特記なし。
生活歴：喫煙 20 本 $\times 43$ 年，
アルコール 焼酎少々。
家族歴：特記なし。
現病歴：十数年前より高血圧と高脂血症を指摘 され，近医で内服加療をうけていた。平成 9 年に胸部大動脈瘤を指摘されるも経過観察されるが，増大傾向認めるため平成 11 年 8 月にステントグラ フト内挿術施行。平成 17 年 4 月の CT にて動脈瘤 の瘤径増大を認め，ステント中枢側からの leakage が疑われたため人工血管置換目的で当院外科入院 となる。今回はその術前精査にて当科紹介となる。
入院時血液検査所見：WBC $4800 / \mathrm{mm}^{3}$ ，RBC 480万 $/ \mathrm{mm}^{3}, \mathrm{Hb} 11.0 \mathrm{~g} / \mathrm{dl}, \mathrm{Ht} 34.4, \mathrm{MCV} 72, \mathrm{MCH} 22.9$ ， MCHC 32，Plt 17.9 万 $/ \mathrm{mm}^{3}$ ，TP $6.5 \mathrm{~g} / \mathrm{dl}$ ，GOT 16 IU／，GPT $16 \mathrm{IU} / \mathrm{l}, \mathrm{LDH} 212 \mathrm{IU} / \mathrm{l}$, ALP $217 \mathrm{IU} / \mathrm{l}$ ， ChE 263，BUN $25 \mathrm{mg} / \mathrm{dl}$ ，Cr $1.4 \mathrm{mg} / \mathrm{dl}$ ，UA $6.3 \mathrm{mg} / \mathrm{dl}$ ，

[^0]Na $141 \mathrm{mEq} / 1, \mathrm{~K} 4.6 \mathrm{mEq} / 1$ ，Cl $110 \mathrm{mEq} / 1$ ，T－cho $201 \mathrm{mg} / \mathrm{dl}$ ，TG $126 \mathrm{mg} / \mathrm{dl}$ ，HDL－cho $48 \mathrm{mg} / \mathrm{dl}$ ．

心電図：正常洞調律，正軸，心拍数 $62 / \mathrm{min}, \mathrm{SV}_{1}$ $+\mathrm{RV}_{5}=4.9 \mathrm{mV}, \mathrm{V} 1$ で 2 相性 P ，陰性 T 波（I，II， III，aVL，aVf），ST 低下（V4－6）（図1）。

胸部レントゲン写真：CTR 45\％，左 2 弓， 3 弓 の軽度突出，左肺野器質化肺炎像，C－P angle： sharp（図2）。

心エコー：LVDd 46 mm ，LVDs 25 mm ，LAD 46 mm ，IVSth 26 mm ，PWth 12 mm ，LVEDV 95 ml ， LVESV 33 ml ，EF 65% ，僧帽弁流入血流 E $53 \mathrm{~cm} / \mathrm{s}$ ， A $74 \mathrm{~cm} / \mathrm{s}, \mathrm{E} / \mathrm{A}=0.71$ ，DcT 300 msec ，僧帽弁血流 A 波持続時間 155 msec ，肺静脈血流 S 波 $63 \mathrm{~cm} / \mathrm{sec}$ ， D 波 $33 \mathrm{~cm} / \mathrm{sec}$ ，A 波 $19 \mathrm{~cm} / \mathrm{s}$ ，肺静脈血流 A 波持続時間 138 msec ，僧帽弁輪速度（中隔） $\mathrm{E}^{\prime} 2.7 \mathrm{~cm} / \mathrm{s}, ~ A^{\prime}$ $7.4 \mathrm{~cm} / \mathrm{s}$ ．

三尖弁逆流 軽度 $(\mathrm{PFV}=2.7 \mathrm{~m} / \mathrm{s}$ ，推定右室収縮期圧 39 mmHg ），LV－Tei index $=0.50, \mathrm{IVC15} / 7 \mathrm{~mm}$ （呼吸性変動あり）（図3，4）
術前精査の心エコー所見で高度の非対称性心肥大があり，僧帽弁流入波形も abnormal relaxation pattern（弛緩障害型）であった。また肺静脈波形は S＞D パターンを示し，左房圧はそれほど高くない印象だった。明らかな弁疾患もなく，やや右室収縮期圧が高めだが心不全は比較的コントロール良好と判断していた。しかし心カテーテル検査にて心内圧データを測定したところ左室圧は等容拡張期の左室圧下降曲線の傾きがなだらかで左室驰緩障害を呈し，スワンガンツカテーテルにより得ら れた PCWP（肺動脈楔入圧）が 19 mmHg と高値で， Forrester 分類のII型であった（図5）．

心臓カテーテル検査：冠動脈造影 seg 2，seg 4AV，seg 7，seg 8，seg 11，seg $14: 25 \%$ 狭窄．

図1 入院時心電図
左室肥大所見を示す。

図2 胸部レントゲン写真

図3 心エコー
非対称性肥大（心室中隔 26 mm ，後壁 12 mm ）を認める。

図4 僧帽弁流入•肺静脈血流波形
弛緩障害型の僧帽弁流入波形で肺静脈血流からも心不全のコントロールは比較的良好と判断した。

図5 肺動脈楔入圧曲線

圧所見：肺動脈楔入圧 19 mmHg ，肺動脈圧 $35 / 21$（26）mmHg，右室圧 $34 / 8 \mathrm{mmHg}$ ，右房圧 9 mmHg ，大動脈圧 $157 / 75 \mathrm{mmHg}$ ，心拍出量 5.7 $1 / \mathrm{min}$ ，心係数 $2.88 \mathrm{l} / \mathrm{min} / \mathrm{m}^{2}$ ，一回心拍出量 87 ml ，一回心拍出係数 $44.3 \mathrm{ml} / \mathrm{m}^{2}$ ．

以上術前検査にて，現在でも軽度の左室拡張障害による心不全があることがわかり，胸部下行大動脈置換術は周術期の補液管理を慎重に行い無事終了した。

考 察

心エコー検査を施行する際，心エコー断層像に より心筋，弁などの性状や動きなどが評価可能で， ドプラ法により心機能，弁膜症の重症度評価，心不全評価などが可能である。現在ではほとんどの施設で心エコー検査の際，僧帽弁流入波形の記録 をルーチンで行っているのが現状であろう。

心内短絡，大動脈弁逆流がなければ左心室容積瞬時増大量は，僧帽弁口通過血流量に等しいこと から，パルスドプラ法による僧帽弁流入血流速波形の分析により左室拡張機能の非侵襲的評価が可能である（図6）$)^{1,2)}$ 。通常左室流入血流速波形は拡張早期波（E 波）と心房収縮期波（A波）の 2 峰性を呈 し，その波形のパターンにより 4 つに分類される。 まず $\mathrm{E} / \mathrm{A}>1$ の健常者にみられる正常型，次に E／A <1 で拡張早期波減速時間の延長したパターンで ある弛緩障害型で，これは左房圧上昇を伴わない左室弛緩障害のある例でみられる。弛緩障害例の拡張期左室充満がさらに障害され，左房圧が上昇 してくると僧帽弁流入速波形の特徴は全く正反対 となり，E波の増高し，正常型と区別のつきにく い偽正常型となる。更に左室コンプライアンスが

正常型

左室弛緩	正常
stiffness	正常
左房圧	正常

弛緩障害型

偽正常型

拘束型

$\uparrow \uparrow \uparrow$

図6 左室流入血流速波形の評価法 ${ }^{1)}$
弛緩障害型では左房圧は正常とされる。

低下すれば拡張早期波減速時間の短縮を認め，A波も平定化し，拘束型になる。

我々が今回経験した症例は，このような僧帽弁流入血流速波形の評価法の上では弛緩障害型であ る。また肺静脈波形は $\mathrm{S}>\mathrm{D}$ パターンを示してい た（左房圧上昇すると S 波が低下し， $\mathrm{S}<\mathrm{D}$ のパタ ーンになる）。今症例はよって左室拡張能低下はあ るものの左房圧上昇はなく，心不全のコントロー ルは比較的良好であると評価されていた。しかし今回スワンガンツカテーテル検査データでは肺動脈楔入圧は高値であった $(\mathrm{PCWP}=19 \mathrm{mmHg})$ 。

今症例において僧帽弁流入血流速波形での評価 が困難であった原因として左室肥大が強く，左室弛緩能が著明に障害されていることが挙げられる。左室圧曲線と左房圧曲線の交点（僧帽弁開放に一致）での左室圧下降曲線の勾配が著明に緩やかであ るため，僧帽弁開放後も左室－左房圧較差が生じに くく，左房圧が高いにも拘らず低い E 波を形成し ていることが予想される。左室弛緩能が低下して いる（左室圧曲線の下降勾配がなだらかな）例ほど，左房圧が上昇しても僧帽弁流入血流速波形は偽正常化しにくいことが予想される。今までの報告で も僧帽弁血流速波形が弛緩障害型を呈した冠動脈疾患例の 55 例のうち， 15 例（ 27% ）で左室拡張末期圧が上昇（ $\geqq 15 \mathrm{mmHg})$ していたという ${ }^{3)}$ 。

現在の心エコードプラ法による左室拡張能評価，左房圧評価においては僧帽弁流入血流速波形のほ

かにも様々な指標がある。肺静脈血流波形，組織 ドプラ法を用いた僧帽弁輪速度（図7）などがそれで ある ${ }^{4)}$ 。しかしこれらの指標は循環器専門のなかで も特に心エコーを専門としている医療従事者，超音波技師にしか浸透していないのが現状であろう。

肺静脈血流波形を用いた指標では急性心筋梗塞例において僧帽弁 E 波減速時間（TMF－DcT）と比べ，肺静脈血流 D 波の減速時間（PV－DcT）が肺動脈楔入圧と強い相関を示すことが報告されている ${ }^{5)}$ 。ま た冠動脈疾患例において肺静脈波形の A 波の持続時間（PAd）と僧帽弁流入血流速波形の A 波持続時間（MAd）の差（PAd－MAd）が左室拡張末期圧と相関 することが報告されている ${ }^{3)}$ 。今症例は肥大型心筋症であり，これらの指標での予測は困難であった。

組織ドプラを利用したものでは僧帽弁流入血流速波形の E 波と，僧帽弁輪早期移動速度（ E^{\prime} ）を用 いた $\mathrm{E} / \mathrm{E}^{\prime}$ という指標がある。この指標は左房圧と良好に相関することが報告されている（図8）${ }^{6,7}$ 。ま た肥大型心筋症でも有用である ${ }^{8)}$ 。今回の症例でも E／E’を算出すると高値（E／E＇＝19．6）を示し，スワ ンガンツカテーテルでの評価と一致し，非侵襲的 に肺動脈楔入圧を予測可能であった。このように拡張能，左房圧評価には僧帽弁流入速波形のみで は不十分であり，各指標の特徴を把握して総合的 に評価する必要がある。

図7 僧帽弁輪速度波形（心室中隔）
E^{\prime} は前負荷に影響を比較的受けにくい拡張能の指標とされる．今回の症例でも $\mathrm{E}^{\prime}=2.7 \mathrm{~cm} / \mathrm{s}$ と著明に低下していた。

図8 僧帽弁 E 波／僧帽弁輪速度（ E^{\prime} ）による肺動脈楔入圧推定 ${ }^{5)}$

まと め
心エコー検査において心機能評価，左房圧，心不全評価するにあたり僧帽弁流入血流速波形をは じめ様々な指標があり，その有用性が報告されて きている。心エコーの利点は非侵襲的にそれらを評価できることであるが，今回のようにひとつの評価法のみでは不十分であり，様々な指標から総合的に評価する必要がある。

文 献

1）Khouri SJ，Maly GT，Suh DD，et al：A practical approach to the echocardiographic evaluation of diastolic function． J Am Soc Echocardiogr 2004；17：290－7．
2）Aurigemma GP，Gaasch WH：Diastolic heart failure．N Engl J Med 2004；351：1097－105．
3）Kimura K，Murata K，Tanaka N，et al：The importance of pulmonary venous flow measurement for evaluating left ventricular end－diastolic pressure in patients with coronary artery disease in the early stage of diastolic dysfunction．J Am Soc Echocardiogr 2001；14：987－93．
4）Shon DW，Chai IH，Lee DJ，et al：Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function．J Am Coll Cardiol 1997；30：474－80．
5）Yamamuro A，Yoshida K，Hozumi T，et al：Noninvasive evaluation of pulmonary capillary wedge pressure in pa－ tients with acute myocardial infarction by deceleration time of pulmonary venous flow velocity in diastole．J Am Coll Cardiol 1999；34：90－4．
6）Nagueh SF，Middleton KJ，Kopelen HA，et al：Doppler tissue imaging：a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures．J Am Coll Cardiol 1997；30：1527－33．
7）Nagueh SF，Mikati I，Kopelen HA，et al：Doppler estima－ tion of left ventricular filling pressure in sinus tachy－ cardia．A new application of tissue Doppler imaging． Circulation 1998；98：1644－50．
8）Nagueh SF，Lakkis NM，Middleton KJ，et al：Doppler estimation of left ventricular filling pressures in pa－ tients with hypertrophic cardiomyopathy．Circulation 1999；99：254－61．

A Patient with Hypertrophic Cardiomyopathy Requiring Careful Evaluation of Heart Failure by Doppler Echocardiography

Toshinori Yuasa＊，Yutaka Otsuji＊，Chuwa Tei＊
＊Department of Cardiovascular，Respiratory and Metabolic Medicine， Kagoshima University Hospital，Kagoshima，Japan

We encountered a pre－operative patient with hyper－ trophic cardiomyopathy who needed a careful evaluation of heart failure by Doppler echocardiography．On echo－ cardiographic examination，mitral inflow showed an ab－ normal relaxation pattern，suggesting normal left atrial pressure．However the pulmonary capillary wedge pressure by a Swan－Ganz catheter was elevated．In
echocardiographic parameters，mitral E velocity to mitral annular E velocity ratio（ $\mathrm{E} / \mathrm{E}^{\prime}$ ）suggested high left atrial pressure．Doppler echocardiographic evaluation of heart failure needs to be performed carefully，especially in patients with hypertrophic cardiomyopathy and ad－ vanced diastolic left ventricular relaxation．

Key word ：hypertrophic cardiomyopathy，pulmonary capillary wedge pressure， E / E＇

[^0]: ＊鹿児島大学病院循噮器呼吸器代謝内科学講座

