睡眠時無呼吸症候群は血圧値および運動中の血圧応答にどの程度影響するか

安 達 仁＊

はじめに
睡眠時無呼吸症候群（sleep apnea syndrome：SAS） は，疫学的に高血圧の合併頻度が高いことが報告 されている ${ }^{1,2)}$ 。睡眠からの覚醒反応とそれに伴う交感神経系の活性立進のために高血圧になるとい われている ${ }^{3 \sim 6)}$ ．生化学的な観点から見ると，SAS におけるエンドセリン 1 血中濃度の増加 ${ }^{7}$ ，一酸化窒素の産生能の低下 ${ }^{8,9}$ ，細胞接着因子の産生増加 ${ }^{10)}$ などが，安静時における血管抵抗の元進や血管開存度の低下に寄与し，血圧上昇を来たすもの と思われる。
運動中の血圧応答は心不全重症度や生命予後と関連する ${ }^{11)}$ 。低強度運動中は，骨格筋ポンプの動因による静脈還流増加に伴う前負荷の増大，およ び頻脈による心拍出量の増大によって血圧は維持 される。中等度以上になると，交感神経活性が元進し，心収縮機能の促進と非運動筋血管の収縮が起こって至適血圧に調節される。また，一酸化窒素の産生異常は，運動中の血管拡張応答異常にも関与する可能性があるとも報告されている ${ }^{12)}$ 。し かし，これまで，本邦においてSAS と運動中の血圧応答を検討した報告はない。そこで，今回， SAS 症例における運動負荷試験中の血圧応答につ き検討した。

方 法

当院外来にて病歴上SASの疑いと診断され， 2001 年から心肺運動負荷試験を行った連続 69 例 のうち，β 受容体遮断薬使用例，酸素療法施行中 およびレートコントロールが不十分な心房細動患

[^0]者を除いた 21 例を対象とした（表1）。
PULSOX（帝人ファーマ株式会社）を用いて夜間睡眠中の酸素飽和度 $\left(\mathrm{SpO}_{2}\right)$ を測定した。 1 時間に SpO_{2} が 4% 以上低下する回数を ODI（oxygen de－ saturation index） 4% とし，ODI（ 4% ）が 5 回／hr 以上 の場合，SAS陽性とした ${ }^{133}$ 。ODI $4 \%>5 / \mathrm{hr}$ は AHI $>5 / \mathrm{hr}$ と良好な相関があると報告されている ${ }^{14}$ ．

血圧応答，および運動耐容能は自転車エルゴメ ータ（Lode 社製）およびランププロトコール（10ワ ット／分）を用いた心肺運動負荷試験にて評価した。呼気ガス分析はミナト AE $280 S$ あるいは 300 を用 い，負荷制御装置はフクダ電子 ML6500を用いた． マンシェットを用いた自動血圧測定装置にて，1分毎に血圧を測定した。
呼気ガス分析は breath－by－breath に行い，酸素摂取量（ VO_{2} ），二酸化炭素排出量 $\left(\mathrm{VCO}_{2}\right)$ ，呼吸回数，一回換気量を測定し，これらから分時換気量（VE） を計算した。 $\dot{\mathrm{VO}}_{2}$ と $\dot{\mathrm{VCO}}_{2}$ より V －slope にて AT （嫌気性代謝閾値）を求め ${ }^{15)}$ ，$\dot{\mathrm{V}} \mathrm{CO}_{2}$ と V E より最小二乗法を用いて $\dot{\mathrm{V} E} / \dot{\mathrm{V}} \mathrm{CO}_{2}$ slope を計算した。

データは平均土標準偏差で表わした。各指標同士の相関係数は最小二乗法にて求めた。

結 果

A．ODI

対象患者の ODI は表1 に示すごとく 18.3 ± 9.4 回 $/ \mathrm{hr}$ であった．SAS の基準となる最低値 5.0 から 40.6 までのばらつきがあり，標準偏差が 9.4 と比較的大きい母集団となった。

B．運動耐容能

ODI と運動耐容能との関連を図 $\mathbf{1}$ に示す。対象の AT は平均 $12.9 \pm 2.7 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ ，最高酸素摂取量 は $19.2 \pm 5.9 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ であり，それぞれ標準値の

表1

Initial	age $(\mathrm{y.o})$	sex	LVEF $(\%)$	disease	ODI $(/ \mathrm{min})$	HR at rest $(/ \mathrm{min})$	Peak VO2 $(\mathrm{ml} / \mathrm{min} / \mathrm{kg})$
T．K．	70	m	16	Atrial fibrillation	21.1	85	14.4
H．T．	66	m	50	OMI，DM	5.0	63	14.6
Y．N．	77	m	25	DCM	5.3	110	15.5
M．T．	78	m	31	OMI	10.3	75	13.4
F．T．	72	m	65	HT	19.6	83	24.3
K．K．	61	m	63	HT	21.6	61	21.9
E．N．	49	m	28	HHD	19.9	109	24.0
Y．M．	32	m	68	HT	36.1	99	24.3
Y．T．	58	m	58	dyslipidemia	5.3	59	33.2
S．I．	53	m	69	HT	12.7	78	26.4
I．M．	65	m	38	ICM	19.5	74	18.5
H．T．	61	m	73	HT	40.6	72	25.9
K．I．	65	m	42	DCM	18.4	93	13.0
F．S．	81	f	55	HHD	17.9	60	10.1
E．O．	83	m	42	HT	17	85	18.7
T．K．	42	m	72	OMI	29.7	64	18.5
N．U．	39	m	68	HT	19.8	80	24.6
U．Y．	61	m	32	OMI	14.7	101	13.2
T．S．	51	m	27	OMI	17.7	80	13.3
N．K．	63	m	45	ICM	24.9	79	18.6
A．A．	76	m	56	HT	7.25	84	17.4
mean	62.0		48.7		18.3	80.7	19.2

m ：male，f：female，LVEF：left ventricular ejection fraction，OMI：Old myocardial infarction， DM：diabetes mellitus，DCM：dilated cardiomyopathy，ICM：ischemic cardiomyopathy，
HT：hypertension

図1 運動耐容能と SAS の関係
$79.2 \%, 77.8 \%$ と軽度運動能低下を示す群であった． Weber－Janicki 分類でもともに class Bに属し，mild－ moderate impaired exercise tolerance 群であった。 ODI との相関はAT では $\mathrm{r}=0.024$（図 1 A ），最高酸素摂取量（peak $\dot{\mathrm{VO}}_{2}$ ）では $\mathrm{r}=0.206$（図1B）であり，

ともに有意な相関を示さなかった。
肺における死腔量や換気血流不均衡分布の影響 を受け，心疾患患者においては心拍出量の指標で もある $\dot{\mathrm{VE}} / \dot{\mathrm{VCO}}_{2}$ slope も $\mathrm{r}=-0.256$ と SAS の程度 とは相関を示さなかった（図2）．

図2 VE／VCO2 slope と SAS

図3 心拍応答と SAS

図4 血圧応答と SAS

C．心拍応答
心拍数と心拍応答は自律神経活性を簡便に推測 しうる指標である。安静時心拍数と ODI との相関 は図3Aに示すごとく，まったく相関が認められな かった。また，運動中の心拍応答として単位仕事

率あたりの心拍数変化（HR／WR）を検討したが， HR／WR も図3Bに示すごとく ODI とは有意な相関 を示さなかった。

D．血圧応答
安静時収縮期血圧と ODI との相関を図4に示す。

両者は $\mathrm{r}=0.445$ の正の相関を示していた（図4A）．運動負荷中の血圧応答として，単位仕事率あたり の収縮期血圧変化（BP／WR）を検討したが，BP／WR と ODI の間には $\mathrm{r}=0.108$ と有意な相関は認められ なかった（図4B）．

考 察

今回の検討により，睡眠時無呼吸は安静時血圧 に影響を及ぼす一方，運動中の血圧応答には強い影響を及ぼさないことが示された。
安静時の血压は心拍出量と末梢血管抵抗のバラ ンスにより決定される。SASにおいては覚醒時の交感神経系の活性が立進しており ${ }^{3 \sim 6)}$ ，これが末梢血管抵抗を高めて収縮期血圧を上昇させるものと考えられている。今回の検討でも，従来の報告 ${ }^{1,2)}$ どおり，安静時血圧と睡眠時無呼吸の重症度が正 の相関を示した。同報告では，OSAS（obstructive sleep apnea syndrome）の場合，AHI（apnea hy－ popnea index）が 10 増加すると，SBP が 2.3 mmHg上昇するとされている．今回の我々の検討では， ODI が 10 増加するにつれて SBP は 10.8 mmHg 上昇することが示された。この上昇率の相違につい ては，ODI とAHI との違い，および，人種の違い による可能性が考えられる。

運動中の血圧は，軽労作時においては骨格筋ポ ンプ作用増強による前負荷増強および心拍数増加 により維持され，中等度以上の労作においては交感神経興奮による心収縮力増強，および非活動筋 へ分布する血管の収縮により維持される。
SAS に心不全の合併が多い ${ }^{16,177}$ ことを考慮すると， SAS 重症例ほど末梢骨格筋のポンプ作用が低下し， すなわち，ODI 4% が高値であるほど心拍出量増加率が減弱し，運動中の血圧が増加しにくい可能性 が考えられた。しかし，今回の検討では負荷に対 する血圧応答と ODI は相関しなかった。これは，運動耐容能から見て，対象者の EF は平均 48.7% ， AT は平均 $12.9 \pm 2.7 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ ，最高酸素摂取量は $19.2 \pm 5.9 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ とやや低下を示すものの， Weber－Janicki 分類のC からAに属する群であり，比較的軽症の心不全症例が対象となったためでは ないかと考えられる，すなわち，骨格筋ポンプ作用に影響を及ぼすほど重症な心不全が含まれてい なかったため，血圧応答が ODI 高値例でも減弱し

なかったのではないかと思われる。また，今回の検討では，血圧応答として安静時から最大負荷時 までの血圧変化を平均化したものを用いており，軽労作時のみの血压応答を検察したものではなか ったためとも考えられる。

さらに，今回の検討では，心拍応答もODIの影響を受けなかった。心拍応答が血圧維持に関与す る一要因であることを考慮すると，これも運動負荷に対する血圧応答が ODI と相関しなかった原因 のひとつであると思われる．

SAS には拡張障害合併例が多いことが報告され ている ${ }^{18)}$ 。拡張障害患者では運動中の心拍出量増加が少なくなり，血圧上昇応答不全に関与すると思われる．運動中の拡張障害は心肺運動負荷試験 では最高酸素脈の増加不全として表現されるが，今回の検討ではデータは示していないが，最高酸素脈はODI の程度には関係していなかった。した がって，今回の症例では，拡張障害も来たしてい ない症例であったため，運動中の心拍出量低下現象が起こらず，血圧は正常に維持されたのではな いかと思われる。
SAS 患者では圧受容体反射（BRS）が減弱してい $る^{19,20)}$ ．BRSは自律神経が関与した血圧調節系の最も主要なメカニズムである。BRS の低下は，運動負荷中の血圧応答を減弱させる可能性があるが， しかし今回の検討ではBRSを測定しておらず，各症例においてBRSがどの程度であったかを知るこ とはできない，そのため，血圧応答が ODI と相関 しなかった原因となったか否かについては推測不可能である。

結 語

以上，SASにおける運動負荷に対する血圧応答 を検討した結果，労作時血圧応答にはODI は関与 しないことが示された。

文 献

1）Sin DD，Fitzgerald F，Parker JD，et al：Relationship of systolic BP to obstructive sleep apnea in patients with heart failure．Chest 2003；123：1536－43．
2）Bradley TD，Floras JS：Sleep apnea and heart failure： part I：Obstructive sleep apnea．Circulation 2003；107： 1671－8．
3）Solin P，Kaye DM，Little PJ，et al：Impact of sleep apnea on sympathetic nervous system activity in heart failure．

Chest 2003；123：1119－26．
4）Carlson JT，Hedner J，Elam M，et al：Augmented resting sympathetic activity in awake patients with obstructive sleep apnea．Chest 1993；103：1763－8．
5）Somers VK，Dyken ME，Clary MP，et al：Sympathetic neural mechanisms in obstructive sleep apnea．J Clin Invest 1995；96：1897－904．
6）Leuenberger UA，Brubaker D，Quraishi S，et al：Effects of intermittent hypoxia on sympathetic activity and blood pressure in humans．Auton Neurosci 2005；121： 87－93．
7）Phillips BG，Narkiewicz K，Pesek CA，et al：Effects of obstructive sleep apnea on endothelin－1 and blood pressure．J Hypertens 1999；17：61－6．
8）Kato M，Roberts－Thomson P，Bradley G，et al：Impair－ ment of endothelium－dependent vasodilation of resis－ tance vessels in patients with obstructive sleep apnea． Circulation 2000；102：2607－10．
9）Kraiczi H，Caidahl K，Samuelsson A，et al：Impairment of vascular endothelial function and left ventricular fill－ ing：association with the severity of apnea－induced hy－ poxemia during sleep．Chest 2001；119：1085－91．
10）El－Solh AA，Bozkanat E，Mador J，et al：Association between plasma endothelin－1 levels and Cheyne－ Stokes respiration in patients with congestive heart failure．Chest 2002；121：1928－34．
11）Goto Y，Yasuga Y：Blood pressure response to exercise predicts the survival rate more accurately than ejection fraction or peak $\dot{\mathrm{V}}_{2}$ in patients with dilated cardio－ myopathy of age less than 50 years．Circuation 1999； 100 （Suppl I）：I－443．
12）Koizumi T，Guspta R，Banerjee M，et al：Changes in pulmonary vascular tone during exercise．Effects of ni－
tric oxide（NO）synthase inhibition，L－arginine infusion， and NO inhalation．J Clin Invest 1994；94：2275－82．
13）Sasayama S，Izumi T，Seino Y，et al：Effects of nocturnal oxygen therapy on outcome measures in patients with chronic heart failure and Cheyne－Stokes respiration． Circ J 2006；70；1－7．
14）Duchna HW，Rasche K，Orth M，et al：Sensitivity and specificity of pulse oximetry in diagnosis of sleep－ related respiratory disorders．Pneumologie 1995； 49 （suppl 1）：113－5．
15）Beaver WL，Wasserman K，Whipp BJ：A new method for detecting anaerobic threshold by gas exchange．J Appl Physiol 1986；60：2020－7．
16）Sin DD，Fitzgerald F，Parker JD，et al：Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure．Am J Respir Crit Care Med 1999；160：1101－6．
17）Javaheri S，Parker TJ，Liming JD，et al：Sleep apnea in 81 ambulatory male patients with stable heart failure． Types and their prevalences，consequences，and pres－ entations．Circulation 1998；97；2154－9．
18）Cargill RI，Kiely DG，Lipworth BJ：Adverse effects of hypoxaemia on diastolic filling in humans．Clin Sci 1995；89：165－9．
19）Tkacova R，Dajani HR，Rankin F，et al：Continuous positive airway pressure improves nocturnal baroreflex sensitivity of patients with heart failure and obstructive sleep apnea．J Hypertens 2000；18：1257－62．
20）Cooper VL，Pearson SB，Bowker CM，et al：Interaction of chemoreceptor and baroreceptor reflexes by hypoxia and hypercapnia－a mechanism for promoting hyper－ tension in obstructive sleep apnoea．J Physiol 2005； 568（Pt 2）：677－87．

[^0]: ＊群馬県立心臟血管センター循環器内科

