特集

睡眠時無呼吸症候群は血圧値および 運動中の血圧応答にどの程度影響するか

安達 仁*

はじめに

睡眠時無呼吸症候群 (sleep apnea syndrome: SAS) は、疫学的に高血圧の合併頻度が高いことが報告 されている^{1,2)}.睡眠からの覚醒反応とそれに伴う 交感神経系の活性亢進のために高血圧になるとい われている^{3~6)}.生化学的な観点から見ると、SAS におけるエンドセリン1血中濃度の増加⁷⁾,一酸化 窒素の産生能の低下^{8,9)},細胞接着因子の産生増 加¹⁰⁾などが、安静時における血管抵抗の亢進や血 管開存度の低下に寄与し、血圧上昇を来たすもの と思われる.

運動中の血圧応答は心不全重症度や生命予後と 関連する¹¹⁾.低強度運動中は,骨格筋ポンプの動 因による静脈還流増加に伴う前負荷の増大,およ び頻脈による心拍出量の増大によって血圧は維持 される.中等度以上になると,交感神経活性が亢 進し,心収縮機能の促進と非運動筋血管の収縮が 起こって至適血圧に調節される.また,一酸化窒 素の産生異常は,運動中の血管拡張応答異常にも 関与する可能性があるとも報告されている¹²⁾.し かし,これまで,本邦において SAS と運動中の血 圧応答を検討した報告はない.そこで,今回, SAS 症例における運動負荷試験中の血圧応答につ き検討した.

方 法

当院外来にて病歴上 SAS の疑いと診断され, 2001 年から心肺運動負荷試験を行った連続 69 例 のうち, β受容体遮断薬使用例,酸素療法施行中 およびレートコントロールが不十分な心房細動患

*群馬県立心臓血管センター循環器内科

者を除いた 21 例を対象とした(表1).

PULSOX(帝人ファーマ株式会社)を用いて夜間 睡眠中の酸素飽和度(SpO2)を測定した.1時間に SpO2が4%以上低下する回数をODI(oxygen desaturation index)4%とし,ODI(4%)が5回/hr以上 の場合,SAS陽性とした¹³⁾.ODI 4%>5/hrはAHI >5/hrと良好な相関があると報告されている¹⁴⁾.

血圧応答,および運動耐容能は自転車エルゴメ ータ(Lode 社製)およびランププロトコール(10 ワ ット/分)を用いた心肺運動負荷試験にて評価した. 呼気ガス分析はミナト AE280S あるいは 300 を用 い,負荷制御装置はフクダ電子 ML6500 を用いた. マンシェットを用いた自動血圧測定装置にて,1 分毎に血圧を測定した.

呼気ガス分析は breath-by-breath に行い,酸素摂 取量(VO2),二酸化炭素排出量(VCO2),呼吸回数, 一回換気量を測定し,これらから分時換気量(VE) を計算した. VO2 と VCO2 より V-slope にて AT(嫌 気性代謝閾値)を求め¹⁵⁾, VCO2 と VE より最小二 乗法を用いて VE/VCO2 slope を計算した.

データは平均±標準偏差で表わした.各指標同 士の相関係数は最小二乗法にて求めた.

結 果

A. ODI

対象患者の ODI は表1 に示すごとく 18.3±9.4 回 /hr であった. SAS の基準となる最低値 5.0 から 40.6 までのばらつきがあり,標準偏差が 9.4 と比 較的大きい母集団となった.

B. 運動耐容能

ODI と運動耐容能との関連を図1 に示す.対象の AT は平均 12.9±2.7ml/min/kg, 最高酸素摂取量 は 19.2±5.9ml/min/kg であり, それぞれ標準値の

Initial	age (y.o)	sex	LVEF (%)	disease	ODI (/min)	HR at rest (/min)	Peak VO2 (ml/min/kg)
T.K.	70	m	16	Atrial fibrillation	21.1	85	14.4
H.T.	66	m	50	OMI, DM	5.0	63	14.6
Y.N.	77	m	25	DCM	5.3	110	15.5
M.T.	78	m	31	OMI	10.3	75	13.4
F.T.	72	m	65	HT	19.6	83	24.3
K.K.	61	m	63	HT	21.6	61	21.9
E.N.	49	m	28	HHD	19.9	109	24.0
Y.M.	32	m	68	HT	36.1	99	24.3
Y.T.	58	m	58	dyslipidemia	5.3	59	33.2
S.I.	53	m	69	HT	12.7	78	26.4
I.M.	65	m	38	ICM	19.5	74	18.5
H.T.	61	m	73	HT	40.6	72	25.9
K.I.	65	m	42	DCM	18.4	93	13.0
F.S.	81	f	55	HHD	17.9	60	10.1
E.O.	83	m	42	HT	17	85	18.7
T.K.	42	m	72	OMI	29.7	64	18.5
N.U.	39	m	68	HT	19.8	80	24.6
U.Y.	61	m	32	OMI	14.7	101	13.2
T.S.	51	m	27	OMI	17.7	80	13.3
N.K.	63	m	45	ICM	24.9	79	18.6
A.A.	76	m	56	HT	7.25	84	17.4
mean	62.0		48.7		18.3	80.7	19.2

表1

m: male, f: female, LVEF: left ventricular ejection fraction, OMI: Old myocardial infarction, DM: diabetes mellitus, DCM: dilated cardiomyopathy, ICM: ischemic cardiomyopathy, HT: hypertension

79.2%, 77.8%と軽度運動能低下を示す群であった. Weber-Janicki分類でもともに class B に属し, mildmoderate impaired exercise tolerance 群であった. ODI との相関は AT では r=0.024(図1A), 最高酸 素摂取量 (peak VO₂)では r=0.206(図1B)であり, ともに有意な相関を示さなかった.

肺における死腔量や換気血流不均衡分布の影響 を受け、心疾患患者においては心拍出量の指標で もある VE/VCO₂ slope も r=-0.256 と SAS の程度 とは相関を示さなかった(図2).

C. 心拍応答

心拍数と心拍応答は自律神経活性を簡便に推測 しうる指標である.安静時心拍数とODIとの相関 は図3Aに示すごとく,まったく相関が認められな かった.また,運動中の心拍応答として単位仕事 率あたりの心拍数変化(HR/WR)を検討したが, HR/WR も図3B に示すごとく ODI とは有意な相関 を示さなかった.

D. 血圧応答

安静時収縮期血圧とODIとの相関を図4に示す.

両者はr=0.445の正の相関を示していた(図4A). 運動負荷中の血圧応答として、単位仕事率あたり の収縮期血圧変化(BP/WR)を検討したが、BP/WR と ODIの間にはr=0.108と有意な相関は認められ なかった(図4B).

考 察

今回の検討により,睡眠時無呼吸は安静時血圧 に影響を及ぼす一方,運動中の血圧応答には強い 影響を及ぼさないことが示された.

安静時の血圧は心拍出量と末梢血管抵抗のバラ ンスにより決定される. SAS においては覚醒時の 交感神経系の活性が亢進しており^{3~6}, これが末梢 血管抵抗を高めて収縮期血圧を上昇させるものと 考えられている.今回の検討でも,従来の報告^{1,2)} どおり,安静時血圧と睡眠時無呼吸の重症度が正 の相関を示した.同報告では,OSAS (obstructive sleep apnea syndrome)の場合, AHI (apnea hypopnea index)が10増加すると,SBP が2.3mmHg 上昇するとされている.今回の我々の検討では, ODI が10増加するにつれてSBP は10.8mmHg上 昇することが示された.この上昇率の相違につい ては,ODI と AHI との違い,および,人種の違い による可能性が考えられる.

運動中の血圧は,軽労作時においては骨格筋ポ ンプ作用増強による前負荷増強および心拍数増加 により維持され,中等度以上の労作においては交 感神経興奮による心収縮力増強,および非活動筋 へ分布する血管の収縮により維持される.

SAS に心不全の合併が多い^{16,17)}ことを考慮すると, SAS 重症例ほど末梢骨格筋のポンプ作用が低下し, すなわち,ODI 4%が高値であるほど心拍出量増加 率が減弱し,運動中の血圧が増加しにくい可能性 が考えられた.しかし,今回の検討では負荷に対 する血圧応答とODI は相関しなかった.これは, 運動耐容能から見て,対象者のEF は平均 48.7%, AT は平均 12.9±2.7ml/min/kg,最高酸素摂取量は 19.2±5.9ml/min/kgとやや低下を示すものの, Weber-Janicki 分類のCからAに属する群であり, 比較的軽症の心不全症例が対象となったためでは ないかと考えられる.すなわち,骨格筋ポンプ作 用に影響を及ぼすほど重症な心不全が含まれてい なかったため,血圧応答がODI 高値例でも減弱し なかったのではないかと思われる.また,今回の 検討では,血圧応答として安静時から最大負荷時 までの血圧変化を平均化したものを用いており, 軽労作時のみの血圧応答を検察したものではなか ったためとも考えられる.

さらに、今回の検討では、心拍応答も ODI の影響を受けなかった.心拍応答が血圧維持に関与する一要因であることを考慮すると、これも運動負荷に対する血圧応答が ODI と相関しなかった原因のひとつであると思われる.

SASには拡張障害合併例が多いことが報告され ている¹⁸⁾. 拡張障害患者では運動中の心拍出量増 加が少なくなり,血圧上昇応答不全に関与すると 思われる.運動中の拡張障害は心肺運動負荷試験 では最高酸素脈の増加不全として表現されるが, 今回の検討ではデータは示していないが,最高酸 素脈は ODI の程度には関係していなかった.した がって,今回の症例では,拡張障害も来たしてい ない症例であったため,運動中の心拍出量低下現 象が起こらず,血圧は正常に維持されたのではな いかと思われる.

SAS 患者では圧受容体反射(BRS)が減弱している^{19,20)}. BRS は自律神経が関与した血圧調節系の 最も主要なメカニズムである. BRS の低下は,運 動負荷中の血圧応答を減弱させる可能性があるが, しかし今回の検討では BRS を測定しておらず,各 症例において BRS がどの程度であったかを知るこ とはできない. そのため,血圧応答が ODI と相関 しなかった原因となったか否かについては推測不 可能である.

結 語

以上, SAS における運動負荷に対する血圧応答 を検討した結果,労作時血圧応答には ODI は関与 しないことが示された.

文 献

- Sin DD, Fitzgerald F, Parker JD, et al: Relationship of systolic BP to obstructive sleep apnea in patients with heart failure. Chest 2003; 123: 1536–43.
- Bradley TD, Floras JS: Sleep apnea and heart failure: part I: Obstructive sleep apnea. Circulation 2003; 107: 1671–8.
- Solin P, Kaye DM, Little PJ, et al: Impact of sleep apnea on sympathetic nervous system activity in heart failure.

Chest 2003; 123: 1119-26.

- Carlson JT, Hedner J, Elam M, et al: Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest 1993; 103: 1763–8.
- Somers VK, Dyken ME, Clary MP, et al: Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 1995; 96: 1897–904.
- Leuenberger UA, Brubaker D, Quraishi S, et al: Effects of intermittent hypoxia on sympathetic activity and blood pressure in humans. Auton Neurosci 2005; 121: 87–93.
- Phillips BG, Narkiewicz K, Pesek CA, et al: Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J Hypertens 1999; 17: 61–6.
- Kato M, Roberts-Thomson P, Bradley G, et al: Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 2000; 102: 2607–10.
- 9) Kraiczi H, Caidahl K, Samuelsson A, et al: Impairment of vascular endothelial function and left ventricular filling: association with the severity of apnea-induced hypoxemia during sleep. Chest 2001; 119: 1085–91.
- El-Solh AA, Bozkanat E, Mador J, et al: Association between plasma endothelin-1 levels and Cheyne-Stokes respiration in patients with congestive heart failure. Chest 2002; 121: 1928–34.
- 11) Goto Y, Yasuga Y: Blood pressure response to exercise predicts the survival rate more accurately than ejection fraction or peak VO₂ in patients with dilated cardiomyopathy of age less than 50 years. Circuation 1999; 100 (Suppl I): I-443.
- 12) Koizumi T, Guspta R, Banerjee M, et al: Changes in pulmonary vascular tone during exercise. Effects of ni-

tric oxide (NO) synthase inhibition, L-arginine infusion, and NO inhalation. J Clin Invest 1994; 94: 2275-82.

- 13) Sasayama S, Izumi T, Seino Y, et al: Effects of nocturnal oxygen therapy on outcome measures in patients with chronic heart failure and Cheyne-Stokes respiration. Circ J 2006; 70; 1–7.
- 14) Duchna HW, Rasche K, Orth M, et al: Sensitivity and specificity of pulse oximetry in diagnosis of sleeprelated respiratory disorders. Pneumologie 1995; 49 (suppl 1): 113-5.
- Beaver WL, Wasserman K, Whipp BJ: A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 1986; 60: 2020–7.
- 16) Sin DD, Fitzgerald F, Parker JD, et al: Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med 1999; 160: 1101–6.
- 17) Javaheri S, Parker TJ, Liming JD, et al: Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations. Circulation 1998; 97; 2154–9.
- Cargill RI, Kiely DG, Lipworth BJ: Adverse effects of hypoxaemia on diastolic filling in humans. Clin Sci 1995; 89: 165–9.
- 19) Tkacova R, Dajani HR, Rankin F, et al: Continuous positive airway pressure improves nocturnal baroreflex sensitivity of patients with heart failure and obstructive sleep apnea. J Hypertens 2000; 18: 1257–62.
- 20) Cooper VL, Pearson SB, Bowker CM, et al: Interaction of chemoreceptor and baroreceptor reflexes by hypoxia and hypercapnia—a mechanism for promoting hypertension in obstructive sleep apnoea. J Physiol 2005; 568 (Pt 2): 677-87.