睡眠時無呼吸症候群患者の夜間不整脈に対する持続陽圧呼吸と口腔内装置の効果

篠 鼻 龍二郎＊，塩 見 利 明＊

はじめに

突然死や乳児突然死症候群（sudden infant death syndrome；SIDS）などは夜間に多いことから，睡眠呼吸障害に伴う不整脈がその原因として重要視さ れてきた。しかし，諸家の検討では，症例数の限 られた報告が多く，睡眠時無呼吸症候群（sleep apnea syndrome；SAS）などの睡眠呼吸障害に認めら れた不整脈の頻度には健常者と有意差がないもの から，非常に高いものまで様々である ${ }^{1 \sim 3)}$ 。
睡眠呼吸障害では，閉塞性睡眠時無呼吸症候群 （obstructive SAS；OSAS）がその大半を占めるが，循環器領域では，心不全などにみられるチェーン ストークス呼吸（Cheyne Stokes respiration；CSR）を伴う中枢性睡眠時無呼吸（central sleep apnea；CSA，以下に両者の合併を CSA－CSR と略す）も多いのが特徴的である。

OSASは無呼吸中の徐脈と呼吸再開時の頻脈を繰り返す睡眠時呼吸性洞性不整脈を生じ，さらに無呼吸中には低酸素血症および呼吸性アシドーシ スなどをきたすため，致死的不整脈との関連も指摘されている。しかし，基礎疾患を有さない OSAS 患者において，致死的不整脈が実際に夜間帯に増加するか否かについての検討は少なく，む しろ最近はOSASと発作性心房細動との関連が指摘されている。一方，CSA－CSR は心機能の低下し た重症患者に多く，この病態では心機能低下に伴 い重篤な不整脈を発生しやすい。
本稿では，OSAS や CSA－CSR などの睡眠呼吸障害に伴う不整脈の種類，頻度につき自験例を中心

[^0]に紹介し，さらに無呼吸に対する持続陽圧呼吸 （continuous positive airway pressure；CPAP）治療と口腔内装置（oral appliance；OA）の不整脈に対する効果について述べる。

頻脈性不整脈および期外収縮の頻度

平成 2 年 3 月から平成 15 年 3 月末までに，鼾な どでSASを疑われ来院した患者で，呼吸曲線入力型ホルター心電図と pulse oximetry の同時記録を施行し得た，初回の未治療例，成人 1296 例（男 1002 例，女 294 例）を対象とし，全例に対して出現した不整脈の種類を，また心室性期外収縮 （VPC）に対しては，その出現頻度をSAS 重症度別 に，鼾症（Apnea Hypopnea Index；AHI $<5 / \mathrm{h}$ ），軽症 $(5 \leqq \mathrm{AHI}<15)$ ，中等症 $(15 \leqq \mathrm{AHI}<30)$ ，重症 $(30 \leqq$ AHI）の 4 群に分類し，調査した．また，重篤な心肺疾患症例を除いた対象についても上記と同様に調査した。

表1に全例での各不整脈出現例数および頻度を示 すが，心室頻拍は 4 例（ 0.4% ）であり， 2 度房室ブ ロック 2 例（ 0.2% ），等頻度房室解離 1 例（ 0.1% ），上室頻拍 5 例（ 0.5% ），心房細動 14 例（ 1.4% ）認め た。鼾症に比し軽症 SAS 群において，上室性期外収縮の頻発例の頻度が有意に高く，また，重症 SAS 群において，心室性期外収縮の頻発例の頻度 が有意に高かった。

図1に全症例での 1 時間毎のVPC の経過を示す。 その 1 時間ごとの出現数は，鼾症群に比し重症群 が有意に多かった（ $\mathrm{p}<0.001$ ）．

表2に重症心肺疾患を除いた例での各不整脈出現頻度を示す。心室頻拍は 1 例（ 0.1% ），上室頻拍 2例（ 0.2% ），心房細動 9 例（ 1.0% ）と少なく，鼾症に比し，上室性期外収縮の頻発例の頻度および，心

表1 鼾症と SAS での各不整脈出現例数および頻度

AHI	＜5	5～15	15～30	$30 \leqq$
n	602	356	160	178
VT	4（0．7）	1 （0．3）	2 （1．3）	0 （0）
PSVT	2 （0．3）	3 （0．8）	0 （0）	$1(0.6)$
af	5（0．8）	3 （0．8）	3 （1．9）	$1(0.6)$
paf	2 （0．3）	3 （0．8）	1 （0．6）	3 （1．7）
SVPC（30 拍／時）	18（3．0）	19（5．3）	3（1．9）	7 （3．9）
VPC（30 拍／時）	17 （2．8）	10 （2．8）	3（1．9）	11 （6．2）

（ ）内は \％表示で重症度別頻度

図1 全例での VPC の変化

表2 重症心肺疾患を除く鼾症およびSAS での各不整脈出現頻度

AHI	＜5	$5 \sim 15$	$15 \sim 30$	$30 \leqq$
n	515	314	138	140
VT	1 （0．2）	0 （0）	2 （1．4）	0 （0）
PSVT	2 （0．4）	2 （0．6）	0 （0）	0 （0）
af	3 （0．6）	0 （0）	1 （0．7）	0 （0）
paf	1 （0．2）	3 （1．0）	0 （0）	1 （0．7）
SVPC（30 拍／時）	17 （3．3）	11（3．5）	2 （1．4）	6（4．3）
VPC（30 拍／時）	10 （1．9）	6（1．9）	2 （1．4）	4 （2．9）

（ ）内は \％表示で重症度別頻度

VPC 数（／時）

室性期外収縮の頻発例の頻度は有意差がなくなっ た。

図2に心肺疾患を含まない対象例での 1 時間毎の VPC の経過を示す，その 1 時間ごとの出現数は，鼾症群に比し中等，重症群が有意に多かった（ $\mathrm{p}<$ $0.001)$ ．

徐脈および房室ブロックの頻度

平成 9 年 9 月から平成 15 年 3 月までに SASを疑われ，頻脈性不整脈と同様の記録を施行した，初回未治療 746 例（男 571 ，女 175）を対象とし， SAS 重症度別に，徐脈および 2 秒以上の pauseの

出現例を調査した。
表3に全対象患者における夜間徐脈出現例数およ び 2 秒以上の pause 数は，SAS 重症度別に比較し たが，徐脈および pause とも出現頻度は変わらな かった。

CPAPと OA の効果

Javaheri ${ }^{4}$ や Ryan 5^{5} ） とよると，慢性心不全を持 つ OSAS 患者の心室期外収縮に対しての CPAP の効果を報告しているが，当院において， n －CPAP， UPPP，OA によってSASの治療に成功した 182 例 で，治療前後での VPC 出現頻度を比較した。図3 に示す，心肺疾患を含む重症以上のSAS 群の治療前後でのVPC の変化では，治療前に平均 16．5／時 であったものが，上気道閉塞に対する直接的な治療により，平均 4．8／時まで有意に改善した。図4の

心肺疾患を含まない重症以上のSAS 群の治療前後 でのVPC の変化では，治療前に平均 28.2 ／時であ ったものが，上気道閉塞に対する直接的な治療に より，平均 3.4 ／時まで有意に改善した。
Voigt $ら^{6)}$ も症例を報告しているが，我々も，終夜睡眠ポリグラフ検査中に頻回の房室ブロックが認められ，CPAP 治療にてブロックが消失した症例を経験したので報告する。
【症例 58 歳男性】
身長 168 cm ，体重 88 kg ，BMI $31.1 \mathrm{~kg} / \mathrm{m}^{2}$ 。既往歴；平成 11 年心筋梗塞発症（下壁），それ以降は内科にて内服加療していた。平成 16 年 2 月現在，左室駆出率（LVEF）は 62% と心機能は良好であった。現病歴； 20 年前より鼾が大きく， 1 年前より睡眠中の無呼吸を指摘され，当センターに紹介された。 Base line control の睡眠ポリグラフ検査（図5）では，

表3 SAS 患者における夜間徐脈出現例数（\％）

	鼾症	軽症	中等症	重症
AHI	<5	$5 \sim 15$	$15 \sim 30$	$3<$
例数	306	231	104	105
Bradycardia	$96(31.4)$	$62(26.8)$	$30(28.8)$	$24(22.9)$
Pause	$16(5.2)$	$12(5.2)$	$6(5.8)$	$7(6.7)$
2nd．AV Block	$0(0.0)$	$1(0.4)$	$1(1.0)$	$1(1.0)$

Pause： 2 秒以上の RR 間隔

図3 治療前後での VPC の変化（SAS 重症以上の心肺疾患を含む）

図4 治療前後での VPC の変化（SAS 重症以上の心肺疾患無し）

図5 睡眠ポリグラフィー（control）

図6 CPAP 中の睡眠ポリグラフィー

Apnea Hypopnea Index $=55.2 / \mathrm{hr}$（Central Sleep Ap－ nea；29．3／hr，Obstructive Sleep Apnea；7．8／hr， Mixed Sleep Apnea；9．9／hr，Hypopnea；8．2／hr）平均 $\mathrm{SpO}_{2}=92 \%$ ，最低 $\mathrm{SpO}_{2}=48 \%$ ，睡眠時間中 SpO_{2} が 90% を割り込む割合が 22.5% の重症 CSAS であり， II 度房室ブロックは 45 個／633分（4．3／時間）でいず れも REM 期の OSA の時に出現した。一方，CPAP中の睡眠ポリグラフィー（図6）では， $\mathrm{AHI}=11.8 /$ hr（CSA； $5.6 / \mathrm{hr}, \mathrm{OSA} ; 0.5 / \mathrm{hr}, \mathrm{MSA} ; 1.8 / \mathrm{hr}$ ，Hypo； $3.8 / \mathrm{hr})$ 平均 $\mathrm{SpO}_{2}=97 \%$ ，最低 $\mathrm{SpO}_{2}=92 \%, \mathrm{SpO}_{2}$ が 90% を割り込む割合は 0% で，II度房室ブロッ クは 5 個 $/ 468$ 分（ $0.6 /$ 時）と減少していた。

この症例は中年男性で肥満，心疾患の既往があ り，SAS の程度は重症でCSA優位であったが， CPAPでの無呼吸の改善とともに房室ブロックも改善した。この改善効果には，CPAPによる直接効果よりもむしろ心機能改善に関連した 2 次的な効果の関与が示唆された。

おわ りに

SAS などの睡眠呼吸障害と不整脈の関係を概説 した。心肺疾患のない重症のSASでは致死的不整脈は多くない。低酸素血症や胸腔内圧の変動の影響の他に，副交感神経の緊張によって徐脈やブロ ックを，また交感神経系の緊張によって期外収縮 を発生しやすくなる。一方，洞不全症候群や完全

房室ブロックなどの徐脈性不整脈や心不全にも睡眠呼吸障害が関与している。そのため，SASを適格に診断し，CPAP治療などで睡眠呼吸障害を適切に治療することは一般的な不整脈の治療におい ても常に念頭に置く必要があると思われる。

文 献

1）Guilleminault C，Connolly SJ，Winkle RA：Cardiac ar－ rhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome．Am J Cardiol 1983；52：490－94．
2）Flemons WW，Remmers JE，Gillis AM：Sleep apnea and cardiac arrhythmias：is there a relationship？Am Rev Respir Dis 1993；148：618－621．
3）Roche F，Thanh Xuong AN，Court－Fortune I：Relation－ ship Among the Severity of Sleep Apnea Syndrome， Cardiac Arrhythmias，and Autonomic Imbalance Pacing and Clinical Electrophysiology 2003；26：669－77．
4）Javaheri S：Effects of Continuous Positive Airway Pres－ sure on Sleep Apnea and Ventricular Irritability in Pa－ tients With Heart Failure Circulation 2000；101：392－7．
5）Ryan CM，Usui K，Floras JS，et al：Effect of continuous positive airway pressure on ventricular ectopy in heart failure patients with obstructive sleep apnea．Thorax 2005；60：781－5．
6）Voigt L，Saul BI，Lombardo G，et al：Correction of AV－ nodal block in a 27 －year－old man with severe obstruc－ tive sleep apnea－a case report．Angiology 2003 May－ Jun；54（3）：363－7．

[^0]: ＊愛知医科大学病院睡眠医療センター

