総 言兑

へムオキシグナーゼ（heme oxygenase；HO），一酸化炭素（carbon monoxide；CO）研究に おける最近の動向

要 旨

生体内において一酸化窒素合成酵素（nitric oxide synthese：NOS）により一酸化窒素（nitric oxide：NO） が，さらには Heme Oxygenase（HO）から誘導され る一酸化炭素（carbon monoxide：CO）がガス状メデ ィエーターとして様々な生理機能を発揮し，多く の病態にも重要な役割を担っていることが明らか になってきた。特に，CO に関するここ数年の知見 は顕著であり，興味深い報告が相次いでいる。本稿では HO ならびに HO から誘導される CO の役割に関して概説し，ヒト疾患における病態の解明•新規治療への応用に関して触れたい。

は じめに

Gas Biology とは最も基本的な生理現象である呼吸をはじめとして，我々の生体環境内外に存在す るガス分子を科学する病態生化学であるが，近年，飛躍的な進歩が見られる分野である。生体が利用 する最もよく知られたガス分子は分子状酸素であ り，その多くは細胞内のミトコンドリアにおいて エネルギーの生成に利用され，その過程において水になる。残りの分子状酸素の一部は，生体内に おいて L－arginine を基質として一酸化窒素合成酵素（nitric oxide synthese：NOS）により一酸化窒素 （nitric oxide：NO）の合成や Heme を基質とした

[^0]Heme oxygenase（HO）による一酸化炭素（carbon monoxide：CO）生成などに利用されている。これら酸素原子を含む生理活性ガス分子に関しては最近著しい研究の進展が見られ，ガス分子状ラジカル であるNO は血管収縮弛緩制御作用，血小板凝集能などを持ち合わせる極めて多彩な機能を有する ことが明らかとなっており，酸素分子や活性酸素種と反応し様々な活性窒素種を生じ，組織，細胞障害に関与することが理解されている。一方，CO に関しても，ここ 10 年ほどの間に生体内において生成され多彩な生物作用を示すことが明らかにな ってきた。非ラジカル性ガス分子であるCO は化学窒息性の有毒ガスとして広く認識されているの は周知の事実であり，暖房器具によるCO ガス中毒や若者の集団自殺などの社会現象は記憶に新し いところである．これは CO が hemoglobin との結合を生じ，その結合力は酸素の約 240 倍ともいわ れ，それが故に CO 分圧が低くても容易に中毒を きたし，酸素輸送能力を失わせることにより生命的な危機をもたらすものである。この CO が生体内で HO を介して生成され，多彩な生物作用を発揮することが，ここ 10 年ほどの間に理解されるよ うになってきた。本稿では，この HO－CO 系に焦点を当て，その生物学的な役割に関して，これま でに理解が及んでいる範囲を確認し，さらに，治療応用への展望までに踏み込んでいきたい。

Heme Oxygenase（HO）とは

非ラジカル性ガス分子であるCO は生体内では Heme oxygenase（ HO ）を介して生成される。 HO は Heme 蛋白の補欠分子族である protoheme IX を基

図1 Heme oxygenase とその生成物（文献）より引用）

質としてHemeと等モルのCO と還元鉄 $\left(\mathrm{Fe}^{2+}\right)$ ， ビリベルジンを生成する酵素であり（図1），Heme の毒性を緩和する酵素として知られている。この酸化的分解反応にはNADPH－cytochrome P450 reductase が電子供与体として関与する ${ }^{1,2)}$ 。これら の反応産物はそれぞれが多彩な作用を持つが，ビ リベルジンは還元酵素によりビリルビンになり非常に高い抗酸化能を示し，細胞，組織を酸化障害 から保護しており，鉄の産生は酸化障害を惹起す る可能性があるものの，実際にはその結合蛋白質 であるフェリチンの翻訳／合成効率を高めて，無毒化し，最終的に細胞外に鉄を排泄することが知ら れている．また，CO は soluble guanylate cyclase の heme に結合し，活性化することで cGMP の合成を促進し，様々なシグナル伝達に関わっている。当初より，この HO は細菌や植物においてもその存在が知られており，ある種の病原性細菌では蛋白質性毒素の産生に必須の鉄を獲得するために， また，植物では赤色光の吸収に関与するビリベル ジンを供給するためであると考えられており， Heme の解毒にとどまらず，非常に幅広い生理機能が想定された。実際に，その予想に違わず，HO ならびに HO を介した生成物は実に様々な生理活性を持つことが明らかとなりつつある。

Heme Oxygenase（HO）の役割

HO には哺乳類では 2 つのアイソザイムが知ら れており，各種ストレスで誘導される誘導型 HO である分子量 32 kD の $\mathrm{HO}-1$ と分子量 36 kD の構成的に発現する HO である HO－2 がある。 $\mathrm{HO}-1$ には Heat shock protein 32 の別名がある通り，温熱変化や重金属，サイトカイン刺激や低酸素状態，紫外線，さらには細胞にかかる擅断応力など，実 に様々なストレスで誘導されることが知られてい る．HO－1 と HO－2 は同じ Heme 分解機構を有す るが，各々の deficient mouse での表現型が異なる ことから，その生理機能は違うことが推察されて いる．すなわち，HO－1 deficient mouse では極端に出生率が低く，血中の鉄含有量が低く，その反面，肝臓，腎臓における鉄沈着の元進が認められ， HO－1 が鉄の再利用に重要であることが明らかに なっている ${ }^{3}$ 。一方で，HO－2 deficient mouse では，出生には問題を生じないものの，腸管における食物の輸送能力が低いことが確認されており，これ は non－adrenergic non－cholinergic 神経からのCO 生成低下によって腸管弛緩が減弱することで説明さ れており ${ }^{4)}$ ，同様の機序で勃起不全も説明されてい る。

HO－1 が抗炎症効果をもたらすことも報告され ており，様々な病態で HO－1 の阻害が炎症病態を悪化させ，HO－1 誘導が炎症病態を改善させるこ とが明らかになっている。我々もマウスに Dextran sodium sulfate（DSS）を自由飲水させることでヒト潰瘍性大腸炎類似腸炎を発症させる実験腸炎モデ ルにおいて腸炎の発症とともに大腸粘膜に発現亢進してくる HO－1 が炎症制御的に作用することを報告してきた ${ }^{5 \sim 7)}$ 。興味深いことに，この HO－1に よる炎症制御はTh1／Th2 サイトカインバランスを維持することによってもたらされることが示唆さ れている。これらの効果は HO－1 蛋白そのものに よるものか，もしくは HO－1 により誘導される先述のCO，ビリベルジン，鉄のいずれかにもとづく ものかは充分に明らかではない。最近はCOに関 する話題が沸騰しており，CO の抗炎症効果も盛ん に議論されている。しかし，実際のところ HO－1発現に伴う抗炎症効果の発揮にはビリベルジンの抗酸化作用が主役を担っているとする論文も多く認められ，実際にビリベルジン，ビリルビンの強力な抗酸化作用には疑う余地もなく，HO－1 の抗炎症作用に関してこれらの物質が複合して効果を発揮しているものと思われる。

HO－CO 系の役割

CO が NO 依存性の血管拡張反応に対して抑制的 に作用し，血管収縮物質として作用する可能性が示された。これは，この 2 つのガス状メディエー ターが soluble Guanylate Cyclase（sGC）という共通 の second messengerを持ち，ともにその heme 位

に結合するが，その活性化の度合いがNO の方が はるかに高いことに起因している ${ }^{8,9)}$ 。sGC は α, β の 2 つのサブユニットを持つへテロダイマーであ るが，この β サブユニット上に sGC 活性化に重要 なへム補欠分子内の鉄イオンが配されている。NO， CO がこの還元型へム鉄に結合する際に sGC の構造変化の度合いがNOの方が大きく，この現象が sGC の活性化メカニズムに重要な調節機能をもた らすものと考えられている ${ }^{10)}$ 。

HO－CO 系の血圧調節にという観点において HO－1， 2 を介して生成された CO が血管平滑筋や血管内皮細胞に作用しcGMPの上昇を引き起こし，内皮依存性の血管弛緩作用をもたらす。すなわち， CO は血管弛緩反応を介して血圧を低下させる作用 を持っているが，その一方で，NO 依存性の血管他緩反応はCOにより抑制される。この調節機構 によりNOによる過度のsGC 活性化をCO が制御 すると考えられている ${ }^{11}$（図2）。実際に，血管平滑筋に特異的に HO－1を過剰発現させたマウスでは，内皮型NOS 遺伝子発現が立進しているにもかかわ らず，野生型マウスに比較して血圧の上昇を示し ており，CO はNO 依存性の血圧低下作用を減弱さ せていた ${ }^{12)}$ 。

Gas Biology 研究の先駆けとなった末松らのグル ープはストレスが負荷されていない正常時におい ても HO 活性が高い臓器である肝臓においてCO が類洞血管を恒常的に弛緩させ血流維持に寄与し ていることを証明し，肝臓組織における定常血流 を保つためにはNOではなく CO が主体になって いることを報告している ${ }^{13 \sim 15)}$ 。我々も先述のマウ

図2 NOとCOの相互作用

ス DSS 大腸炎モデルにおいて大腸炎の進展に伴い腸管粘膜において iNOS や HO－1 の発現が元進し， iNOS 由来のNO が炎症進展における増悪因子とし て作用し，CO がこの NO による sGC 活性を制御 するように作用することを報告しており， $\mathrm{HO}-1$ を阻害する Zinc Protoporphyrin IX（ZnPP）を投与す ると，CO の産生が阻害され，腸炎は増悪すること を報告してきた ${ }^{5 \sim 7)}$ 。

また，最近，sGCに依存しない CO の生理作用 も知られており，CO が K channel の開口確率を sGC 非依存性に増加させること ${ }^{16)}$ や，酸素濃度の低下に際し頸動脈小体において HO－CO 系におけ る CO 生成がそのシグナル伝達を行っているとい う報告 ${ }^{17)}$ があり興味深い。今後の研究成果が期待 される。
他に，精巣における造精機能における HO－CO系の役割も検討されている。精巣は様々なストレ ス刺激に対して脆弱な面を持っており，間質のマ クロファージや Leydig 細胞や精細管における Ser－ toli 細胞に発現する HO－1 がストレス刺激に応じて誘導され，これより生成される CO が減数分裂前 の精細胞にアポトーシスを誘導することが報告さ れている ${ }^{18)}$ 。これは，正常な精巣機能を維持する

ために，すなわち，異常形質を次世代に伝えない という重要不可欠なメカニズムであると考えられ ている．

CO と炎症制御

さらに興味深いことに，近年，CO が強力な抗炎症効果を発揮することが報告されている．これは， CO が p38 MAP kinase を活性化することにより TNF $-\alpha$ ， $\mathrm{IL}-1 \beta$ をはじめとする炎症性サイトカイ ンの産生を抑制するとともに，抗炎症性サイトカ インである IL－10 産生を誘導し，抗炎症効果が発揮されることが報告 ${ }^{19)}$ されたことに始まり，いく つかの知見が報告されている（表1）。また， Endothelin などの細胞増殖因子や E2F－1 などの細胞周期関連遺伝子の抑制作用 ${ }^{20,21)}$ が存在すること も明らかになっており，細胞増殖にも関与してい ることが想定されている。

となると，当然 CO の投与による病態の改善が注目されるが，CO の治療への応用という観点に関 しては，最近，興味深い報告が相次いでおり（表2），様々な治療分野への応用が期待されている。動物実験レベルではあるが肝臓，小腸などの虚血再灌流傷害モデルでの効果は移植医療を意識したもの

表1 In vivo 動物モデルに対するCO ガス吸入の有効性

Animal	Organ	Model	Carbon monoxide		Eficacy	Year Authors	
			Conc．	Duration			
Rat	Lung	Hyperoxic injury	250 ppm	56 h	Effective	1999	Otterbein et al．
Mice	Lung	Inflammation by aeroallergen	250 ppm	48 h	Effective	2001	Chapman et al．
Rats	Lung	Hyperoxic lung injury	$50-500 \mathrm{ppm}$	60 h	No change	2001	Clayton et al．
Rat	Intestine	Ischemia／Reperfusion	250 ppm	1 hr	Effective	2003 Nakao et al．	
Rat	Intestine	Graft motility	250 ppm	25 h	Effective	2003 Nakao et al．	
Mice	Intestine	Postoperative ileus	250 ppm	24 h	Effective	2003 Moore et al．	
Mice	Lung	Airway Hyperesponsiveness	250 ppm	$1 \mathrm{~h} /$ day， 5 day	Effective	2003 Ameredes et al．	
Rat	Heart	Ischemia／Reperfusion	1000 ppm	30 min	Effective	2004 Fujimoto et al．	
Rat	Kidney	Ischemia／Reperfusion	250 ppm	25 h	Effective	2004 Neto et al．	
Mice	Lung	Acute injury，ARDS	500 ppm	1 h	No change	2005 Ghosh et al．	
Rat	Liver	Ischemia／Reperfusion	100 ppm	25 h	Effective	2005 Kaizu et al．	
Rat	Intestine	Necrotizing enterocolitis	250 ppm	$1 \mathrm{~h} /$ day，3day	Effective	2005 Zuckerbraun et al．	
Mice	Multiple organ	Hemorrhagic shock	250 ppm	1 h	Effective	2005 Zuckerbraun et al．	
Rat	Intestine	Postoperative ileus	250 ppm	24 h	Effective	2005 Moore et al．	
Mice	Intestine	IL－10－deficient colitis	250 ppm	24 h	Effective	2005 Hegazi et al．	
Rat	Heart	Myocardial infarction	500 ppm	3 week	Worsen	2005 Mirza et al．	
Mice	Liver	Ischemia／Reperfusion	250 ppm	1 h	Effective	2005	Ott et al．
Pig	Lung	Endotoxin shock	250 ppm	1 h	Effective	2005 Mazzola et al．	
Rat	Heart	Allograft survival	20 ppm	$14-100$ days	Effective	2006 Nakao et al．	
Rat	Kidney	Allograft nephrophathy	20 ppm	30 days	Effective	2006 Neto et al．	

表2 COによる抗炎症，組織保護作用のメカニズム

Inhibition of chemokines and chemokine receptors
Inhibtion of ICAM－1
Inhibition of iNOS expression and NO production
Inhibition of Th1 type cytokines（IL－2，IFN γ ）
Inhibition of proinflammatory mediators（IL－1 $\beta, \mathrm{TNF} \alpha, \mathrm{IL}-6, \mathrm{COX}-2$ ）
Augmentation of IL－10
Heme oxygenase－1－dependent pathway
Nuclear factor $-\kappa$ B－independent pathway
Soluble guanylyl cyclase（sGC）－dependent pathway
p38MAPK pathway－dependent
Akt－eNOS pathway－dependent

図3 CO 曝露装置

であろうし，腸炎モデルや心筋梗塞モデルでの病態改善効果なども将来的には臨床応用される日が来るかもしれない。しかしながら，CO 吸入に関し ては，その多くの実験的検討が $200-500 \mathrm{ppm}$ と高濃度であり，現実的にはヒトが吸入するには副作用が問題となる濃度であり，臨床応用には多くの ハードルがある。もつとも，最近の報告では $20-$ 50 ppm といった低濃度 CO ガスでの臓器保護効果 も見いだされており，臨床応用の可能性も近い可能性がある。我々も独自にCO 吸入装置を設計し （図3），炎症病態を中心にその効果を検討しており，

いくつかの炎症モデルにおける治療効果を見いだ している。今後の展開が期待されるところである。

おわりに

最近，注目を浴びている生体内ガス状メディエ ーターである CO を中心にNOを含めて最近の知見を述べた。 $\mathrm{HO}-\mathrm{CO}$ 系に着目した循環制御，炎症制御は今後ますます発展していく分野であると思 われる。本稿が読者の興味を引くことができたな ら望外の幸せである。

文 献

1）Maines MD：Heme oxygenase：function，multiplicity， regulatory mechanisms，and clinical applications． FASEB J 1988；2：2557－68．
2）Sassa S：Biological Implications of Heme metabolism．J Clinical Biochemistry and Nutrition 2006；38：138－55．
3）Poss KD，Tonegawa S ：Heme oxygenase 1 is required for mammalian iron reutilization．Proc Natl Acad Sci USA 1997；94：10919－24．
4）Burnett AL，Johns DG，Kriegsfeld LJ，et al：Ejaculatory abnormalities in mice with targeted disruption of the gene for heme oxygenase－2．Nat Med 1998；4（1）：84－7．
5）Naito Y，Takagi T，Yoshikawa T：Heme oxygenase－1：a new therapeutic target for inflammatory bowel disease． Aliment Pharmacol Ther 2004 Jul； 20 Suppl 1：177－84．
6）Naito Y，Takagi T，Tomatsuri N，et al：Role of heme oxygenase－ 1 in dextran sulfate sodium－induced intesti－ nal inflammation in mice．Gastroenterol 2003； 124 （Suppl．）：A－490．
7）Takagi T，Naito Y，Katada K，et al：Heme Oxygenase regulates the balance of inflammatory cytokines in dex－ tran sulfate sodium－induced colitis．Gastroenterol 2004； 126 （Suppl．）：A－564．
8）Zhao Y，Schelvis JP，Babcock GT，et al：Identification of histidine 105 in the betal subunit of soluble guanylate cyclase as the heme proximal ligand．Biochemistry． 1998 Mar 31；37（13）：4502－9．
9）Zhao Y，Brandish PE，Ballou DP，et al：A molecular basis for nitric oxide sensing by soluble guanylate cyclase． Proc Natl Acad Sci USA 1999 Dec 21； 96 （26）：14753－8．
10）Koesling D，Friebe A：Soluble guanylyl cyclase：struc－ ture and regulation．Rev Physiol Biochem Pharmacol 1999；135：41－65．
11）Kajimura M，Goda N，Suematsu M：Organ design for generation and reception of CO ：lessons from the liver． Antioxid Redox Signal 2002 Aug；4（4）：633－7．
12）Imai T ，Morita T ，Shindo T ，et al：Vascular smooth mus－
cle cell－directed overexpression of heme oxygenase－1 elevates blood pressure through attenuation of nitric oxide－induced vasodilation in mice．Circ Res 2001 Jul 6； 89（1）：55－62．
13）Suematsu M，Kashiwagi S，Sano T，et al：Carbon monox－ ide as an endogenous modulator of hepatic vascular perfusion．Biochem Biophys Res Commun 1994 Dec 15；205（2）：1333－7．
14）Suematsu M，Goda N，Sano T，et al：Carbon monoxide： an endogenous modulator of sinusoidal tone in the per－ fused rat liver．J Clin Invest 1995 Nov； 96 （5）：2431－7．
15）Goda N，Suzuki K，Naito M，et al：Distribution of heme oxygenase isoforms in rat liver．Topographic basis for carbon monoxide－mediated microvascular relaxation．J Clin Invest 1998 Feb 1； 101 （3）：604－12．
16）Kaide JI，Zhang F，Wei Y，et al：Carbon monoxide of vas－ cular origin attenuates the sensitivity of renal arterial vessels to vasoconstrictors．J Clin Invest 2001 May； 107（9）：1163－71．
17）Prabhakar NR，Dinerman JL，Agani FH，et al：Carbon monoxide：a role in carotid body chemoreception．Proc Natl Acad Sci USA． 1995 Mar 14； 92 （6）：1994－7．
18）Ozawa N，Goda N，Makino N，et al：Leydig cell－derived heme oxygenase－1 regulates apoptosis of premeiotic germ cells in response to stress．J Clin Invest 2002 Feb； 109（4）：457－67．
19）Otterbein LE，Bach FH，Alam J，et al：Carbon monoxide has anti－inflammatory effects involving the mitogen－ activated protein kinase pathway．Nat Med 2000；6（4）： 422－8．
20）Morita T，Kourembanas S：Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell－derived carbon monoxide．J Clin Invest 1995 Dec； 96 （6）：2676－82．
21）Morita T，Mitsialis SA，Koike H，et al：Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells．J Biol Chem 1997 Dec 26； 272 （52）： 32804－9．

[^0]: ＊京都府立医科大学大学院大学医学研究科
 生体機能制御学
 ＊＊京都府立医科大学生体安全医学講座
 ＊＊＊同 生体機能分析医学講座

