# Cardiorenal Insufficiency における新規循環調節ペプチド発見の意義 

平 田 恭 信＊

## はじめに

近年，心機能と腎機能とは密接な関連性がある ことが再認識されている。すなわち心疾患の予後 に腎機能が大きな規定因子として働いていること が種々の疫学調査で証明されている ${ }^{11}$ 。したがって心疾患の予後改善を図るには同時に腎機能を改善 する，もしくは好影響を与える治療法の開発が望 まれる。この原因として様々な因子の関与が考え られているが，腎臓と心臓の両者を共通に障害し得る体液性因子の関与が注目されている。また治療面から考えると心臓と腎臓の両者に共通して効果を発揮する薬剤が望まれる。近年，それについ ても液性因子の臨床応用が期待されている。この観点から本稿では以下の 3 種の循環調節ペプチド について述べる。

## ナトリウム利尿ペプチド

ナトリウム利尿ペプチド，実際，治療薬として用いられているのはANPとBNPであるが，いず れもグアニル酸シクラーゼドメインを有する受容体に結合してcGMPを増加させる。その結果，血管抎張作用と Na 利尿作用を発揮する。心不全にお いては心臓の前負荷，後負荷のいずれも軽減する ことで心不全を改善させる。本邦では $\mathrm{ANP}^{2}$ が，米国ではBNPが心不全の治療薬として臨床に導入 され，一定の評価を得ている。
ANP の腎内の主な作用はANPの受容体が最も密に分布している維体と血管で認められる。 ANP は糸球体の輸入細動脈を拡張するが，同時に

[^0]輸出細動脈は収縮させるという特性があり ${ }^{3)}$ ，この結果，栄球体内圧が上昇し，系球体濾過値が増加 する機序が提唱されている。実際，その証拠とし て紋球体障害を有する病態に ANPを投与すると蛋白尿が増加する。これは動物実験では証明されて いるが，臨床例での実証は困難である。著者らは Gomez による推定式を用いて健常者，本態性高血圧者，心不全あるいは慢性腎不全患者で検討した。 イヌリンクリアランスで系球体濾過値を，パラア ミノ馬尿酸クリアランスで腎血流量を測定し，総腎，輸入側ならびに輸出側腎血管抵抗を算出した。健常者にノルエピネフリンの血圧を $10 \%$ 上昇させ る量を投与すると腎血流量，䊾球体濾過値の減少と ともに尿中 Na 排泄量も低下した。腎血管抵抗は増加し，その内訳は輸入，輸出側の腎血管抵抗のい ずれも増加させた。ここに ANPを $0.025 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$ の速度で注入すると，これらの指標は全て再増加 し，血管抵抗の減少は輸入側でのみ認められた（図 1）．図 2 は ANPのみを投与した際の腎血行動態の変化である。本態性高血圧症では健常者と同様に輸入側血管抵抗は低下するものの，輸出側のそれ は上昇し，栄球体内圧の上昇と共に采球体濾過値 が増加すると考えられる。一方，慢性腎不全，心不全でも腎血管抵抗は本態性高血圧症と同程度に減少するものの輸入側血管抵抗が減少するのであ って輸出側は変化しなかった。このことは先述の ノルエピネフリン注入実験から推測されるように腎不全，心不全では既に輸出側血管抵抗の上昇が著しく，それ以上の収縮は生じなかったものと思 われる。図3はANPを $0.025 \mu \mathrm{~g} / \mathrm{min} / \mathrm{kg}$ で 40 分間投与した際の尿中 Na 排泄量，系球体濾過値，腎血流量の変化を示すが，健常者よりむしろ心不全，

腎血管抵抗 （ $10^{3}$ dyne $\cdot \sec \cdot \mathrm{cm}^{-5}$ ）


図1 ノルエピネフリンおよび ANP 投与時の腎内血行動態の変化


図2 ANP $(0.025 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min})$ 投与時の腎内血行動態の変化

腎不全の方が反応性が高く，腎不全に対しても有効であることがわかる ${ }^{4}$ ．

これらのことからANP は心臓ばかりでなく腎臓 においても臓器保護作用を発揮すると考えられる。 ANP などの Na 利尿ペプチドは生体の血圧•体液量調節に重要な役割を果たしていることがその受容体ノックアウト（KO）マウスなどで明らかにされ ているが，上記の特質により腎障害を有する心疾患患者の治療薬としての有用性が期待できる。今後は経口投与が可能な Na 利尿ペプチド分解酵素阻害薬などの臨床導入が期待される。

## アドレノメデュリン（adrenomedullin；AM）

AM は Kitamura ら5 によりヒト褐色細胞腫から血小板のcAMP 増加作用を指標にして単離同定さ れた。その後の検討により，AM は広範な組織で産生されることが明らかにされた。AMは発見の経緯から，その作用機序としてセカンドメッセン ジャーはcAMPと予測された。しかしその後，AM は cAMP による内皮非依存性血管拡張作用以外の経路でも血管拡張作用を発揮することが明らかと なった。図4 はラット大動脈のリング標本にAM を添加した際の張力の変化を示す。AMは濃度依存性に張力を低下させるが，予め内皮を剥離して


図3 ANP（ $0.025 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$ ）投与の健常者（control），慢性腎不全（CRF）およびうっ血性心不全（CHF）における尿中 Na 排泄量（UNaV），糸球体濾過値（GFR）ならびに腎血流量（RBF）に及ぼす効果文献 4 より改変引用．＊ $\mathrm{p}<0.05$ vs．before ANP
（a）
（b）
AM $(\log \mathrm{M})$

（c）
（

図4 AMによる大動脈拡張作用に及ぼす内皮剥離（E（－）），NO 合成酵素阻害薬（L－NAME）およびグアニル酸シ クラーゼ阻害薬（MB）の影響
文献 6 より引用。＊ $\mathrm{p}<0.05$

おくと AM の作用は $50 \%$ 以下に減弱した。NO 合成酵素阻害薬である L－NAME あるいはグアニル酸 シクラーゼの阻害薬であるメチレンブルーを投与 しておくと，AM の血管弛緩作用は内皮剥離と同程度に減弱したことより，AM の血管抎張作用は少なくとも一部は NO－cGMP 系を介することが明 らかになった ${ }^{66}$ 。AMによるNO の遊離機序として図5に示すようにラット大動脈においてAM は Akt のリン酸化を促進した。この作用は phosphatydil inositol 3－kinase（PI3K）阻害薬で抑制された。さら に AM の血管拡張作用は PI3K 阻害薬の前処置， PI3K の KO マウスで減弱し，Akt の dominant nega－
tive mutant の遺伝子導入のいずれによっても内皮剥離と同程度に抑制された。これらのことから AM はPI3K／Akt 経路の活性化により，NOを遊離 させ，血管拡張作用を発揮すると考えられた ${ }^{7}$ 。

AM は血管内皮細胞においてアポトーシスの抑制作用を示し，またマウスや家鬼の下肢虚血モデ ルにおいて血管新生作用を示す。図6はマウスの大腿動脈を結紮した後の血流量の変化を示してい る。AM 遺伝子を毎週，大腿部に筋注したマウス では血流の回復が良好である。この回復は毛細血管の増加によることが示されている。また NO 合成酵素のKOマウスにAMを投与しても血管新生

A．


B．


図5 AMによるAkt のリン酸化と phosphatydil inositol 3－kinase 阻害薬である LY294002 および WT（wortmannin）による抑制
文献 7 より引用。


図6 大腿動脈結紮後のアドレノメデュリンによる血流量の回復（Laser Doppler 血流計による測定）文献 8 から引用．${ }^{* *} \mathrm{p}<0.01 \mathrm{vs}$ ．AM

は増加しないことから AM はNO 依存性に血管新生作用を発揮すると考えられる ${ }^{8)}$ 。

こうした作用からAMの治療薬としての期待が高まっている。実際，AM は臨床例においてもそ の血管拡張•利尿作用から心不全例，肺高血圧症例に有効性が確かめられている ${ }^{9)}$ 。我々はAMの

KO マウスでは腎臓の虚血•再灌流障害による腎障害が増悪し，一方，AM を過剰発現するトランス ジェニックマウスではそれが軽減することを報告 した ${ }^{10)}$ 。このように腎保護作用も併せ持っている AM は腎障害を有する心血管病に有用な治療法に なり得ると考えられる。

## グレリン（ghrelin）

グレリンはKojima ら ${ }^{11)}$ によって胃底線から発見 されたペプチドで下垂体に作用して成長ホルモン （GH）分泌を促進し，摂食促進作用や脂肪蓄積作用，消化管運動調整などのエネルギー代謝調節に対し て重要な作用を有している。グレリンの受容体は下垂体に多く発現しているが，心臓•血管や腎臓 でもその発現が確認されている。

グレリンの作用は直接作用と GH／インスリン様成長因子（IGF）を介する間接作用の二重性が考えら れている．Nagaya らはラットにおける心不全の改善効果を示した。これをヒトの心不全，特に cachexia を呈する重症心不全患者に応用し，グレ リンの投与により心機能の改善とともに食欲の増進の他，エネルギー代謝の改善を認めた ${ }^{12)}$ 。これ はグレリンは強い GH 分泌作用以外にも，血管拡張作用による心後負荷の軽減や心拍出量の増加作用を介して循環調節に関与すると考えられるが，血管拡張作用の詳細は明らかでない。

グレリンはマウスの腎組織にも認められており， その組織含量は血中濃度をはるかに上回り，局所

的にも産生されている。またグレリンの受容体も腎臓に発現している。両側腎動脈を圧迫して血流 を遮断し，45分後に圧迫を解除する虚血•再灌流障害による急性腎不全マウスではあらかじめグレ リンを投与しておくと，有意に生存率の向上が認 められ，図7に示すように腎組織障害が軽減する。 この時，単離灌流腎におけるAMによる血管拡張作用と NO 遊離速度を測定したのが図8である。 グレリンを投与しておくと腎血管の内皮機能の低下が軽減し，同時にNO 遊離も回復していた。ま


図7 虚血•再灌流障害（I／R）による腎組織障害とグ レリン投与の効果
文献 13 より改変引用。
＊ $\mathrm{p}<0.05$ vs．Vehicle，$\# \mathrm{p}<0.05$ vs．Vehicle I／R


図8 虚血•再灌流障害（I／R）マウスの単離灌流腎におけるアドレノメデュリンによる腎灌流圧および NO 遊離と グレリン（GHR）投与の効果
文献 13 より改変引用．${ }^{*} \mathrm{p}<0.05$ vs．Vehicle，$\# \mathrm{p}<0.05 \mathrm{vs}$ ．Vehicle I／R


図9 虚血•再灌流障害（I／R）による血清尿素窒素（BUN）およびクレアチニン（Cr）濃度とグレリン（GHR）投与の効果
文献 13 より改変引用．${ }^{*} \mathrm{p}<0.05$ vs．Vehicle，${ }^{* *}<0.01$ vs．Vehicle $I / R$


図10 心疾患の予後を決める腎機能
ADMA：非対称性メチルアルギニン，RAAS：レニン・アンジオテンシン・アルドステロン系，SNA：交感神経活性

た腎機能に関しても，血清尿素窒素およびクレア チニンのいずれもグレリン投与群で改善が認めら れた（図9）．グレリンは尿細管のアポトーシスを抑 え，腎血管内皮障害を軽減させるが，この効果は インスリン受容体基質（IRS）－2 の KO マウスでは認 められないことから GH，IGF－1 を介して内皮細胞 をはじめとする細胞保護作用を発揮した可能性が ある ${ }^{13)}$ 。これらのことよりグレリンも心腎両臓器 の保護作用を有し，治療薬としての有用性が期待 される。

## おわりに

図10に腎機能障害が存在すると心血管障害のリ スクが高くなる原因を図示した。様々な要因が関与すると考えられるが，本稿では一部の cardiorenal
insufficiency の状態ではこうした新規循環調節ぺ プチドの投与あるいは活性化が有効で，臨床応用 が望まれる。

## 文 献

1）Go AS，Chertow GM，Fan D，et al：Chronic kidney dis－ ease and the risks of death，cardiovascular events，and hospitalization．N Engl J Med 2004；351：1296－305．
2）Saito Y，Nakao K，Nishimura K，et al：Clinical application of atrial natriuretic polypeptide in patients with conges－ tive heart failure：beneficial effects on left ventricular function．Circulation 1987；76：115－24．
3）Kimura K，Hirata Y，Tojo A，et al：Effects of atrial natri－ uretic peptide on renal arterioles：morphometric analy－ sis using microvascular casts．Am J Physiol 1990；259： F936－44．
4）Hirata Y，Ishii M，Matsuoka H，et al：Plasma concentra－
tion of $\alpha$－hANP and renal responses to $\alpha$－hANP infu－ sion in patients with congestive heart failure and those with chronic renal failure．Jpn Circ J 1988；52：1459－64．
5）Kitamura K，Kangawa K，Kawamoto M，et al： Adrenomedullin：a novel hypotensive peptide isolated from human pheochromocytoma．Biochem Biophys Res Commun 1993；192：553－60．
6）Hayakawa H，Hirata Y，Kakoki M，et al：Role of nitric oxide－cGMP pathway in adrenomedullin－induced vaso－ dilation in rat．Hypertension 1999；33：689－93．
7）Nishimatsu H，Suzuki E，Nagata D，et al：Adrenome－ dullin induces endothelium－dependent vasorelaxation via the phosphatidyl inositol 3 kinase／Akt－dependent pathway in rat aorta．Circ Res 2001；89：63－70．
8）Abe M，Sata M，Nishimatsu H，et al：Adrenomedullin augments collateral development in response to acute ischemia．Biochem Biophys Res Commun 2003；306： 10－5．
9）Nagaya N，Satoh T，Nishikimi T，et al：Hemodynamic，
renal，and hormonal effects of adrenomedullin infusion in patients with congestive heart failure．Circulation 2000；101：498－503．
10）Nishimatsu H，Hirata Y，Shindo T，et al：Role of endoge－ nous adrenomedullin in the regulation of vascular tone and ischemic renal injury：studies on transgenic／ knockout mice of adrenomedullin gene．Circ Res 2002； 90：657－63．
11）Kojima M，Hosoda H，Date Y，et al：Ghrelin is a growth－ hormone－releasing acylated peptide from stomach．Na－ ture 1999；402：656－60．
12）Nagaya N，Moriya J，Yasumura Y ，et al：Effects of ghrelin administration on left ventricular function，exercise ca－ pacity，and muscle wasting in patients with chronic heart failure．Circulation 2004；110：3674－9．
13）Takeda R，Nishimatsu H，Suzuki E，et al：Ghrelin im－ proves renal function in mice with ischemic acute renal failure．J Am Soc Nephrol 2006；17：113－21．


[^0]:    ＊東京大学医学部循嘸器内科

