難治性循環器疾患に対するアドレノメデユリンの トランスレーショナルリサーチ

永 谷 憲 歳＊，寒 川 賢 治＊＊

はじめに
アドレノメデユリン（adrenomedullin；AM）${ }^{1)}$ は副腎髄質，血管壁のみならず，肺，心臓，腎臓など の多くの組織に分布し，血管拡張作用，利尿，ナ トリウム利尿作用 ${ }^{2)}$ ，強心作用 ${ }^{3)}$ ，肺血管拡張作用 ${ }^{4)}$ ， アルドステロン分泌抑制作用 ${ }^{5)}$ などの多くの生理活性を有するペプチドである。血漿および組織 AM濃度は心不全 ${ }^{6)}$ ，肺高血圧 ${ }^{7)}$ ，急性心筋梗塞 ${ }^{8)}$ らの病態で上昇することから，AM は循環調節因子と して重要な働きを担っていると考えられる。これ まで我々は，AM 投与による急性心不全治療 ${ }^{9}{ }^{1010)}$ ，肺高血圧治療 ${ }^{11)}{ }^{12)}$ を行ってきた。これらの試みは AM の血管拡張，利尿作用による急性の血行動態改善効果を期待したものである（図1）。一方，近年， AM の新たな生理作用として血管新生作用 ${ }^{13 \sim 16)}$ ，血管内皮細胞や心筋細胞のアポトーシス抑制作用 ${ }^{17,18)}$ ，骨髄細胞の末梢への動員作用が明らかとな

ってきた．AMとその受容体 CRLR（calcitonin－ receptor－like receptor）は虚血や低酸素刺激でその産生が促進されることを考慮すると，AM／CRLR系は虚血を修復すべく血管再生に関与しているこ とが示唆される ${ }^{19,20)}$ 。こうして AM は心血管組織再生に応用できる可能性がある。本稿では，難治性循環器疾患に対するAMのトランスレーショナ ルリサーチに関して紹介する。特に AM の血行動態改善効果を利用した急性心不全治療や肺高血圧治療と AM の組織再生作用を期待した急性心筋梗塞治療や末梢動脈閉塞症治療に関して最近の我々 の知見を中心に概説する。

心不全の病態と AM，急性心不全治療への応用

AM は血管壁のみならず，心臓，肺，腎臓など の多くの組織に分布し，降圧活性以外に，利尿， ナトリウム利尿作用 ${ }^{2)}$ ，強心作用 ${ }^{3)}$ などの生理活性 を有する．血漿および組織 AM 濃度は心不全，高

図1 AM の多彩な生理作用と治療への応用

[^0]

図2 ${ }^{125}$ I－AM をラットに経静脈的投与したときの AM 結合分布肺組織に著明な AM の集積が認められた。

血圧，腎不全らの病態において上昇していること から，AM は血圧と体液の調節に重要な働きを担 っていると考えられる。動物心不全モデルを用い た検討から，急性の経静脈的 AM 投与は心前負荷と後負荷を軽減させ，心拍出量を増大し，利尿 を促進させることが明らかとなった ${ }^{21,22)}$ 。そこで，著者らは国立循環器病センター倫理委員会の承認 のもと，うっ血性心不全患者を対象に，実際に AM 投与による治療効果を検討した ${ }^{9}$ ．経静脈的に $\mathrm{AM}(0.05 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min})$ を投与したところ，体血圧と肺動脈楔入圧が低下し，心係数が著明に増加した。一般に強心薬は心筋への直接の作用により心筋酸素消費量を増加させると言われているが，AM は心筋酸素消費量を増加させずに心筋収縮性，心拍出量を増大させた ${ }^{23)}$ 。AMによる心後負荷の低下 が心筋エネルギー消費の軽減に関与した可能性が ある。また経静脈的にAMを投与した場合にも冠血流量が増加した。AM投与により尿量と尿中ナ トリウム排泄量も軽度であるが増加した。既に心不全治療薬として臨床応用されているANPとの効果を等モル量で比較したところ，血圧低下と心係数増加はAM で著しかった ${ }^{10}$ ．一方，AM 投与に よる肺動脈楔入圧の低下や利尿作用， Na 利尿作用 は，ANPと比較して軽度であった。AMの利尿作用はANP と異なり栄球体濾過量は増加させないが，尿細管に直接働いて水電解質の再吸収を抑制する ことによる ${ }^{24)}$ 。以上の結果より AM は主に心後負荷の軽減，心拍出量増大に働き，主に前負荷軽減 に働くANPとは異なった作用機序を有することが

示された。両ペプチドを併用して両者の弱点を補 うことで，より有効な心不全治療が行える可能性 がある．

肺高血圧の病態と AM，治療への応用

AM の血管拡張作用には，血管平滑筋細胞の受容体に直接作用し cAMP を介した血管拡張と，一方，血管内皮細胞に作用し一酸化窒素（NO）合成を介した血管拡張がある。AMの強力な血管拡張作用は，このような二つの経路が重なり発揮される と考えられる。興味深いことにAMの結合部位は体血管よりむしろ肺血管に多く存在する（図2）。肺高血圧症患者の血漿AM 濃度は健常者に比べ上昇 しているが，肺静脈内 AM 濃度は肺動脈内 AM 濃度に比べ低下している ${ }^{25)}$ 。これらの結果は肺高血圧の病態で産生された AM が一部肺で代謝される ことを示しており，AM は肺血管トーヌスの調節 に重要な役割を担っていることが示唆される。

In vitro においてAM は胎児血清や血小板由来成長因子が誘導する平滑筋細胞の遊走や増殖を抑制 する ${ }^{26)}$ ．In vivoにおいてモノクロタリン肺高血圧 ラットに，AMを浸透圧ポンプにて持続投与する と肺血管平滑筋増殖が有意に抑制される ${ }^{27)}$ 。以上 の結果から，肺高血圧に伴う肺血管リモデリング に対してAMは抑制的に機能していると考えられる。

これらの動物実験を経て我々は，予後不良と考 えられている原発性肺高血圧症らの重症肺高血圧症 14 例（肺動脈平均圧： 62 mmHg ）を対象に，AM $(0.05 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min})$ を経静脈的投与の効果を検討した ${ }^{11)}$ 。

A．

B．

図3 モノクロタリン（MCT）肺高血圧ラットへ繰り返し AM 吸入投与後の肺血管抵抗（A）と生命予後の変化（B） ＊p <0.05 vs Sham－saline，$\dagger \mathrm{p}<0.05$ vs MCT－saline

図4 AMによる血管新生と細胞内伝達

肺動脈圧に有意な変化は認められなかったが，心係数は著明に増大し $(+44 \%)$ ，肺血管抵抗は有意 な低下を示した（ -32% ）。AM は血漿 cAMP 濃度 を有意に増加させたことから，これらの血行動態 の変化は cAMP を介した肺血管拡張作用，強心作用が関与している可能性がある。

しかしながら，静脈からの全身投与では少なか らず体血圧が低下した。また肺血管拡張の作用時間も短かった。そこでネブライザーによる吸入投

与を考案し，ラット肺高血圧モデルを用いて，吸入投与による肺血管選択的血管拡張と効果の持続性を確認した ${ }^{28)}$ 。また慢性投与実験では 1 日 4 回 30 分 3 週間の吸入投与によって，肺血管抵抗と生命予後が著明に改善することを証明した（図3），以上の結果より，実際に原発性肺高血圧症患者 10 人 を対象に，ネブライザーを用いた AM 吸入効果を検討した ${ }^{12)}$ 。経気道より投与された AM は体血圧 に影響を与えることなく，肺血管抵抗を有意に低，

図5 AM の再灌流障害に対する効果（文献 18 より改変）
（A）ラット再灌流モデルにおいて，Placebo 投与群（I／R－Placebo）と比較して AM 投与群（I／R－AM）では，著明に梗塞域が縮小していた。
（B）TUNEL 陽性心筋細胞は，AM 投与により抑制され，その効果は PI3K 阻害薬（Wo：wortmanni）により消失した。

下させ，さらに運動耐容能を改善させた。明らか な副作用は出現しないことから，AM 吸入投与は致死的肺高血圧症の新たな治療戦略になる可能性 があると考えられた ${ }^{299}$ ．

AM の血管再生作用

AM は血管新生および胎児期の血管形成におい ても重要な役割を担っている。AMノックアウト マウスのホモ接合体は大動脈と頸動脈で基底膜が欠如しており ${ }^{30)}$ ，AM は血管形成に不可欠な要素 であることが示唆される。AM はPI3K－Akt 経路を活性化することで血管内皮細胞の生存，遊走，増殖に関与する。さらに近年，AM が血管新生に関与することが多施設から報告された ${ }^{13 \sim 16)}$ 。我々も ウサギ下肢虚血モデルに AM 遺伝子を導入すると，虚血下肢において血管新生が誘導されること，AM の血管新生作用は代表的な血管新生因子である VEGF を介さない独自の作用であることを報告した。

AM は虚血や炎症によりその産生が促進される。低酸素によって誘発された hypoxia－inducible fac－
tor－1（HIF－1）は AM の最も強力な産生刺激因子で ある ${ }^{311}$（図4）。さらにAMのレセプターCRLRのプ ロモーター活性は HIF－1 により調節されている ${ }^{199}$ ．急性心筋梗塞時に虚血心筋では AM の産生が元進 していること，AMの強力な血管新生作用を考慮 すると，内因性の AM は代償機序として働いてい る可能性がある。こうしてAM／CRLR／RAMP2， 3 系 は虚血時の血管再生に重要な働きをする。これま でに報告されたAMの血管新生作用のメカニズム としてはPI3K－Akt，ERK－MAPK，focal adhesion kinase（p125FAK）を介した経路がある ${ }^{13)}$ 。その他， AM は骨髄間質細胞の eNOS，MMP－9，Kit ligand を活性化することで，骨髄幹細胞の末梢への動員 を促す ${ }^{32)}$ ．

AMによる心筋保護と急性心筋梗塞治療への応用

近年，冠動脈疾患に対する血管再開通術は有効 な治療法であるが，再灌流時の心筋障害が問題と なる場合がある，著者らは，ラット虚血再灌流モ デルを用いてAM 投与による心筋保護効果や心筋

図6 AM 投与と骨髄単核球（MNC）移植の併用効果（文献 34 より改変）
（A）レーザードプラによる下肢血流の評価 AM または MNC の単独投与でも血流改善はみられたが，併用により その効果は増大した。
（B）毛細血管数の評価＊：p＜0．05 vs．Control；$\dagger: p<0.05$ vs．AM および MNC．

アポトーシス抑制効果を検討した（図5 $)^{18)}$ 。冠動脈左前下行枝を 30 分間血流途絶後に再灌流したラッ トに，AMを $0.05 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$ で投与，もしくは PI3K 阻害剤を 15 分間投与後に AM を投与した。虚血再灌流 24 時間後の評価では，AM 投与により梗塞域が著明に縮小した。心筋細胞のアポトーシ スは著明に抑制されていた。また，心機能の指標 となる左室拡張末期圧は梗塞後に著明に上昇した が，AM 投与によりその上昇は有意に抑制された。 これらの効果はPI3K 阻害剤併用により減弱した。以上より，AM 投与は梗塞域および心機能の改善効果をもたらすこと，さらにその効果は少なくと も一部 PI3K－Akt 経路を介した心筋細胞のアポトー シス抑制が関与することが明らかとなった。この心筋保護作用には，心筋細胞に対する直接のアポ トーシス抑制作用以外に，前述した AM による血管再生作用，骨髄細胞の強制動員による間接的心筋保護効果が関与することもその後の研究で明ら かとなってきた。

また，Kato らは，アデノウイルスをベクターと してラットに AM 遺伝子を導入し， 30 分間の心筋虚血のあと， 120 分間再灌流した際の変化につい て報告している ${ }^{33)}$ 。対照群と比較して，AM 遺伝子の導入は心筋梗塞範囲を有意に減少させ，観察期間中の心室細動の頻度を減少させた。心筋細胞 や非心筋細胞のアポトーシスは，AM 遺伝子導入 により抑制された。また，これらの効果が AM 受容体であるCGRP の拮抗体の投与によりブロック

されることが示された。 さらに AM 遺伝子の導入 が虚血心筋における NADH／NADPH オキシダーゼ の活性を低下させ，心筋で増加した活性酸素を減少させることを報告した。

このように AM は，虚血性心疾患に対してアポ トーシス抑制，酸化ストレス抑制，血管再生に働 き，また AMによる血管拡張作用が関与し，総合的に心筋保護効果をもたらすと考えられる。現在，国立循環器病センターでは，倫理委員会の承認の もと AM 投与による急性心筋梗塞治療を行ってお り，その安全性と有効性を検討している。

細胞移植治療との併用療法

近年，骨髄細胞の移植による末梢動脈閉塞症に対する血管再生療法が多くの施設で行われている が，その効果が不十分な症例が少なからず存在す る．独自の血管再生作用，血管拡張作用，アポト ーシス抑制作用を有する AM を細胞移植と併用す ることで治療効果を高めることができる可能性が ある。そこでAMと MNC 移植の併用効果を，下肢虚血動物モデルを用いて検討した ${ }^{34)}$ 。 3 週間後 の比較では AM 単独投与および MNC 移植単独に おいて未治療群と比較して有意な血流増加を認め た。更にAMと MNCの併用投与においては単独治療群よりも有意な血流増加を呈した（図6）。毛細血管の増加も併用投与で最も著明であった。MNC単独と比較してAM 併用投与では，MNC 由来の血管内皮細胞が多く認められた。以上のことより

AM 単独投与，MNC 単独投与でも血管新生作用が あるが，併用投与により血管新生効果が更に増強 されることが明らかになった。また心筋虚血モデ ルの検討においても同様の結果が得られた ${ }^{35)}$ 。ま た間葉系幹細胞移植との併用においても血管や神経再生効果を増強させた ${ }^{36)}$ 。MNC や血管内皮前駆細胞（EPCs）には AM のレセプターである CRLR が存在することから，AM と MNC それぞれの血管新生作用による相加作用以外に，AM の細胞への直接作用（相乗効果）が示唆された。

おわ りに

難治性循環器疾患に対する AM の基礎および臨床応用に関して紹介した。AMは，利尿作用や血管拡張作用による血行動態改善作用のみならず，心筋や内皮細胞のアポトーシス抑制，血管新生，骨髄細胞の動員作用を介して，虚血の是正•組織再生に働くことが示唆された。これら多彩な生理作用は既存の薬剤では得られない効果を達成でき る可能性があり，難治性循環器疾患に対する AM の新たな治療薬としての開発が期待される。

文 献

1）Kitamura K，Kangawa K，Kawamoto M，et al： Adrenomedullin：a novel hypotensive peptide isolated from human pheochromocytoma．Biochem Biophys Res Commun 1993；192：553－60．
2）Majid DS，Kadowitz PJ，Coy DH，et al：Renal responses to intra－arterial administration of adrenomedullin in dogs．Am J Physiol 1996；270：F200－5．
3）Szokodi I，Kinnunen P，Tavi P，et al：Evidence for cAMP－ independent mechanisms mediating the effects of adrenomedullin，a new inotropic peptide．Circulation 1998；97：1062－70．
4）Lippton H，Chang JK，Hao Q，et al：Adrenomedullin dilates the pulmonary vascular bed in vivo．J Appl Physiol 1994；76：2154－6．
5）Yamaguchi T，Baba K，Doi Y，et al：Effect of adrenome－ dullin on aldosterone secretion by dispersed rat adrenal zona glomerulosa cells．Life Sci 1995；56：379－87．
6）Nishikimi T，Saito Y，Kitamura K，et al：Increased plasma levels of adrenomedullin in patients with heart failure．J Am Coll Cardiol 1995； 26 ：1424－31．
7）Kakishita M，Nishikimi T，Okano Y，et al：Increased plasma levels of adrenomedullin in patients with pul－ monary hypertension．Clin Sci 1999；96：33－9．
8）Nagaya N，Nishikimi T，Yoshihara F，et al：Cardiac adrenomedullin gene expression and peptide accumula－
tion after acute myocardial infarction in rats．Am J Physiol 2000；278：R1019－26．
9）Nagaya N，Satoh T，Nishikimi T，et al：Hemodynamic， renal and hormonal effects of adrenomedullin infusion in patients with congestive heart failure．Circulation 2000；101：498－503．
10）Oya H，Nagaya N，Furuichi S，et al：Comparison of in－ travenous adrenomedullin with atrial natriuretic peptide in patients with congestive heart failure．Am J Cardiol 2000；86：94－8．
11）Nagaya N，Nishikimi T，Uematsu M，et al：Haemody－ namic and hormonal effects of adrenomedullin in pa－ tients with pulmonary hypertension．Heart 2000；84： 653－8．
12）Nagaya N，Kyotani S，Uematsu M，et al：Effects of adrenomedullin inhalation on hemodynamics and exer－ cise capacity in patients with idiopathic pulmonary arte－ rial hypertension．Circulation 2004；109：351－6．
13）Kim W，Moon SO，Sung MJ，et al：Angiogenic role of adrenomedullin through activation of Akt，mitogen－ activated protein kinase，and focal adhesion kinase in endothelial cells．FASEB J 2003；17：1937－9．
14）Miyashita K，Itoh H，Sawada N，et al：Adrenomedullin provokes endothelial Akt activation and promotes vas－ cular regeneration both in vitro and in vivo．FEBS Lett 2003；544：86－92．
15）Abe M，Sato M，Nishimatsu H，et al：Adrenomedullin augments collateral development in response to acute ischemia．Biochem Biophys Res Commun 2003；306： 10－5．
16）Tokunaga N，Nagaya N，Shirai M，et al：Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia：benefits of a novel nonviral vector，gelatin．Circulation 2004；109： 526－31．
17）Kato H，Shichiri M，Marumo F，et al：Adrenomedullin as an autocrine／paracrine apoptosis survival factor for rat endothelial cells．Endocrinology 1997；138：2615－20．
18）Okumura H，Nagaya N，Itoh T，et al：Adrenomedullin infusion attenuates myocardial ischemia／reperfusion in－ jury through the phosphatidylinositol 3－kinase／Akt－ dependent pathway．Circulation 2004；109：242－8．
19）Nikitenko LL，Smith DM，Bicknell R，et al：Transcrip－ tional regulation of the CRLR gene in human microvas－ cular endothelial cells by hypoxia．FASEB J 2003；17： 1499－501．
20）Nagaya N，Mori H，Murakami S，et al：Adrenomedullin： angiogenesis and gene therapy．AM J Physiol 2005 Re－ view；288：R1432－7．
21）Rademaker MT，Charles CJ，Lewis LK，et al：Beneficial hemodynamic and renal effects of adrenomedullin in an ovine model of heart failure．Circulation 1997；96： 1983－90．

22）Nagaya N，Nishikimi T，Horio T，et al：Cardiovascular and renal effects of adrenomedullin in rats with heart failure．Am J Physiol 1999；276：R213－8．
23）Nagaya N ，Goto Y ，Satoh T ，et al：Intravenous adrenomedullin in myocardial function and energy me－ tabolism in patients after myocardial infarction．J Car－ diovasc Pharmacol 2002；39：754－60．
24）Ebara T，Miura K，Okumura M，et al：Effect of adrenomedullin on renal hemodynamics and function in dogs．Eur J Pharmacol 1994；263：69－73．
25）Yoshibayashi M，Kamiya T，Kitamura K，et al：Plasma levels of adrenomedullin in primary and secondary pulmonary hypertension in patients <20 years of age． Am J Cardiol 1997；79：1556－8．
26）Horio T，Kohno M，Kano H，et al：Adrenomedullin as a novel antimigration factor of vascular smooth muscle cells．Circ Res 1995；77：660－4．
27）Yoshihara F，Nishikimi T，Horio T，et al：Chronic infusion of adrenomedullin reduces pulmonary hypertension and lessens right ventricular hypertrophy in rats adminis－ tered monocrotaline．Eur J Pharmacol 1998；355：33－9．
28）Nagaya N，Okumura H，Uematsu M，et al：Repeated inhalation of adrenomedullin ameliorates pulmonary hypertension and survival in monocrotaline rats．Am J Physiol Heart Circ Physiol 2003；285：H2125－31．
29）Nagaya N，Kangawa K：Adrenomedullin in the treat－ ment of pulmonary hypertension．Peptides 2004；25： 2013－8．

30）Shindo T，Kurihara Y，Nishimatsu H，et al：Vascular abnormalities and elevated blood pressure in mice lack－ ing adrenomedullin gene．Circulation 2001；104：1964－71．
31）Garayoa M，Martinez A，Lee S，et al：Hypoxia－inducible factor－1（HIF－1）up－regulates adrenomedullin expres－ sion in human tumor cell lines during oxygen depriva－ tion：a possible promotion mechanism of carcinogenesis． Mol Endocrinol 2000；14：848－62．
32）Murakami S，Nagaya N，Itoh T，et al：Adrenomedullin regenerates alveoli and vasculature in elastase－induced pulmonary emphysema in mice．Am J Respir Crit Care Med 2005；172：581－9．
33）Kato K，Yin H，Agata J，et al：Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion．Am J Physiol Heart Circ Physiol 2003；285：H1506－14．
34）Iwase T，Nagaya N，Fujii T，et al：Adrenomedullin en－ hances angiogenic potency of bone marrow transplanta－ tion in a rat model of hindlimb ischemia．Circulation 2005；111：356－62．
35）Fujii T，Nagaya N，Iwase T，et al：Adrenomedullin en－ hances therapeutic potency of bone marrow transplan－ tation for myocardial infarction in rats．Am J Physiol Heart Circ Physiol 2005；288：H1444－50．
36）Hanabusa K，Nagaya N，Iwase T，et al：Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats．Stroke 2005；36： 853－8．

[^0]: ＊国立循環器病センター研究所再生医療部
 ＊＊国立循環器病センター研究所生化学部

