アルドステロンの心筋への直接作用

吉 村 道 博＊

はじめに：アルドステロンの作用にはナトリウ ムが重要な共役因子である

近年，アルドステロンが心血管リモデリングを惹き起こす事実が次々と報告されている。アルド ステロンはその発見から既に50年が経過している が，その奥深さには驚かされる。しかしながら，我々は，アルドステロンの作用に関する重要な共役因子を見落としてはならない。in vivoの実験系 でナトリウム負荷をせずにアルドステロンを投与 しても心筋傷害を起こさないという事実からわか るように ${ }^{1)}$ ，アルドステロンの心筋傷害には「食塩」 の存在が不可欠である。事実，一般的に，心肥大 または心不全状態において減塩食は非常に重要で あると以前より報告されている ${ }^{2)}$ 。食塩をほとんど摂取しない部族であるヤノマモインディアンは血中アルドステロン値が高値であるにも拘らず高血圧を来たさない ${ }^{3,4)}$ 。

我々は，食塩とアルドステロンが相乗相加的に心肥大を生じさせるという仮説を立て，それを検証するために実験を進めた。また，その研究過程 において，アルドステロンの興味深い作用，つま り，高ナトリウム状態下での抗細胞脱水作用（細胞保護作用）に気付いたのでそれについても報告する ${ }^{5)}$ 。

心筋細胞に存在する $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger 1 （NHE1）が鍵になる

高食塩状態下のアルドステロンの心肥大に及ぼ す直接作用を検討するにあたり，我々は， $\mathrm{Na}^{+} / \mathrm{H}^{+}$ exchanger 1 （NHE1）の重要性にまず注目した（図1）。

最初に，NHE1 について概説する。HHE1 は Na^{+}流入と共役して H^{+}を細胞外へ排出する 2 次性イオ

[^0]

図1

ンポンプであり，あらゆる動物の組織に普遍的に存在している ${ }^{6,7)}$ 。また，NHE1 は細胞内 pH や細胞容積の調節にかかわり，細胞機能の維持に重要 な役割を果たす交換輸送体である。心筋細胞にお いて細胞内外へのナトリウム輸送体が数種類存在 するが，アルドステロンが関与する輸送体の中で細胞内へのナトリウム輸送を行うものとしてNHE1 がある。心筋における NHE1 の詳細な機序は不明 であるが，心肥大発症のメカニズムの一部に関与 していると考えられている ${ }^{8 \sim 10)}$ ．Dostal DE らは， in vivo 研究において NHE1 特異的阻害剤が心肥大 を抑制したことを報告している ${ }^{11)}$ 。NHE1 の機能 を阻害するコンパウンドは幾つか報告されており，本実験ではSM20220を使用した。

心臓におけるアルドステロンの作用

：ゲノム，非ゲノム作用の両面からの検討

アルドステロンをはじめとするステロイドホル モンの作用にはその詳細は不明な点が多いが，遺伝子発現を介するゲノム作用と遺伝子発現を介さ ずに早期に作用する非ゲノム作用があるといわれ ている ${ }^{12,13)}$ 。また，心筋細胞に対してもアルドス テロンのゲノム作用と非ゲノム作用があると報告 されている ${ }^{14,15)}$ 。血管平滑筋細胞において，アル ドステロンはNHE1 に対してゲノム作用，非ゲノ ム作用を有するという報告があり，心筋細胞でも

図2 アルドステロンの早期作用（細胞形態） 2 時間後

NHE1 に対して，同様にゲノム作用，非ゲノム作用を有している可能性が考えられる ${ }^{16)}$ 。

本研究の目的

本研究では，細胞外液ナトリウム負荷時に，（1） アルドステロンは，早期にはNHE1 を介して細胞内ヘナトリウムを流入（非ゲノム作用）させること で高浸透圧による心筋細胞脱水を防ぐ生理学的作用を有し，また，②アルドステロンは，ナトリウ ムの長期負荷において，NHE1を介した心筋細胞肥大作用（ゲノム作用）を有するという仮説をたて，仔ラット心筋細胞培養系を用いて検討した。

今回の研究ではアルドステロンの作用を早期作用 （ $0 \sim 6$ 時間）と長期作用（ 72 時間）に分けて表現した。

早期作用の結果

A．正および高ナトリウム濃度下でのアルドステ ロン投与による心筋細胞面積の早期変化
図2は細胞外液ナトリウム濃度 141 （正常範囲）， $146 \mathrm{mEq} / 1$（生理的に高いナトリウム濃度）における アルドステロン $10^{-7} \mathrm{~mol} / 1$ 投与，非投与下に 2 時間培養した心筋細胞の写真である。細胞外液ナトリ ウム濃度 $141 \mathrm{mEq} / 1$ での細胞はアルドステロン投与，非投与に拘らず細胞面積の変化は認めなかった。

図3 アルドステロンの早期作用（細胞面積）
＊ $\mathrm{p}<0.01$ ：vs． 0 hour
＊＊ $\mathrm{p}<0.0001$ ：vs． 0 hour
\dagger p＜0．01：vs． $141 \mathrm{mEq} / 1 \mathrm{Na}^{+}$
$\dagger \dagger \mathrm{p}<0.0001$ ：vs． $141 \mathrm{mEq} / 1 \mathrm{Na}^{+}$

細胞外液ナトリウム濃度 $146 \mathrm{mEq} / 1$ 下ではアルドス テロン非投与心筋細胞は細胞面積の縮小が見られ， アルドステロン投与下でその縮小作用を抑制した （図3）．この作用はNHE1 の機能を阻害するSM20220

で抑制できたが，MR 阻害薬であるエプレレノン では抑制されなかった（図4）。
B．正および高ナトリウム濃度下でのアルドステ
ロン投与による心筋細胞内ナトリウム，プロト ン濃度の早期変化
図5は細胞外液ナトリウム濃度 $141,146 \mathrm{mEq} / 1$下でのアルドステロン投与による心筋細胞内ナト リウム濃度の早期変化について示したものである。 ナトリウム濃度は励起光 340 nm 螢光 510 nm ，励起光 380 nm 螢光 510 nm （F340／F380）の比で表現され る．細胞外液ナトリウム濃度 $141 \mathrm{mEq} / 1$ 下でのアル ドステロン投与したものであるが，アルドステロ

図4 アルドステロンの早期作用 （細胞面積） 2 時間後 ALDO：aldosterone $10^{-7} \mathrm{~mol} / 1$ EPLE：eplerenone $10^{-5} \mathrm{~mol} / 1$ SM：SM $2022010^{-7} \mathrm{~mol} / \mathrm{l}$ ＊＊＊ $\mathrm{p}<0.0001$

Na；141mEq／1

SM 20220 $10^{-5} \mathrm{~mol} / 1$
eplerenone $10^{-5} \mathrm{~mol} / \mathrm{l}$

ン投与前後において細胞内ナトリウム濃度の変化 は認められなかった。しかし，細胞外液ナトリウ ム濃度 $146 \mathrm{mEq} / 1$ にするとアルドステロン投与後細胞内ナトリウム濃度の上昇が認められた。この作用はSM20220 で抑制できたが，エプレレノンでは抑制できなかった。

図6 はアルドステロン投与によるNHE1 の活性

図6 アルドステロンの長期作用
（細胞内プロトン濃度変化） 2 時間後
＊ $\mathrm{p}<0.05$ ，vs． $141 \mathrm{mEq} / \mathrm{l} \mathrm{Na}^{+}$
＊＊$p<0.005$ ，vs． $141 \mathrm{mEq} / \mathrm{Na}^{+}$
＊＊＊$p<0.0005$ ，vs． $141 \mathrm{mEq} / 1 \mathrm{Na}^{+}$
$\dagger \mathrm{p}<0.05$ ：vs． $146 \mathrm{mEq} / \mathrm{l} \mathrm{Na}^{+}$
$\dagger \dagger \mathrm{p}<0.05$ ：vs． $146 \mathrm{mEq} / \mathrm{l} \mathrm{Na}^{+}$
$\mathrm{Na} ; 146 \mathrm{mEq} / \mathrm{l}$

図5 アルドステロンの早期作用（細胞内ナトリウム濃度変化） 2 時間後

図7 アルドステロンの長期作用（細胞形態） 72 時間後
ALDO：aldosterone $10^{-7} \mathrm{~mol} / /$ ，EPLE：eplerenone $10^{-5} \mathrm{~mol} / /$ ，SM：SM $2022010^{-7} \mathrm{~mol} / 1$

図8 アルドステロンの長期作用（細胞形態） 72 時間後
ALDO：aldosterone $10^{-7} \mathrm{~mol} / /$ ，EPLE：eplerenone $10^{-5} \mathrm{~mol} / /$ ，SM：SM $2022010^{-7} \mathrm{~mol} / 1$

を調べるために細胞外液ナトリウム濃度 141 ， $146 \mathrm{mEq} / 1$ 下でのアルドステロン投与による心筋細胞内プロトン濃度の早期変化について示したもの である。各々の時間における細胞外液ナトリウム濃度 $141 \mathrm{mEq} / 1$ での細胞内 LysoSensor Green DND－ 153 螢光輝度を基準にしてアルドステロン刺激後 の細胞外液ナトリウム濃度 $141,146 m E q / 1$ での細胞内 LysoSensor Green DND－153 螢光輝度の比を表に示した。細胞外液ナトリウム濃度 $141 \mathrm{mEq} / 1$ に おけるアルドステロン投与後の細胞内プロトン濃度は時間とともに低下傾向にあるが，有意な低下 を認めなかった。しかし，細胞外液ナトリウム濃度 $146 \mathrm{mEq} / 1$ におけるアルドステロン投与後の細胞内プロトン濃度は時間とともに有意に低下してい

た。このプロトン濃度低下作用はSM20220 で抑制 されが，エプレレノンでは抑制されなかった。

長期作用の結果

A．正および高ナトリウム濃度下でのアルドステ ロンの心筋細胞に与える影響：72時間培養で の検討結果

図7は，細胞外液ナトリウム濃度 $141,146 \mathrm{mEq} / \mathrm{l}$ におけるアルドステロン $10^{-7} \mathrm{~mol} / \mathrm{l}$ 投与，および非投与下に 72 時間培養した心筋細胞の代表的な写真 である．それを統計学的に処理したものが図8で あるが，細胞外液ナトリウム濃度 $141,146 \mathrm{mEq} / 1$ での細胞はアルドステロン非投与にて細胞面積 の変化は認めなかった。細胞外液ナトリウム濃度

図9 アルドステロンの長期作用（細胞肥大マーカー） 72 時間後
＊ $\mathrm{p}<0.05$ ，＊＊ $\mathrm{p}<0.005$ ，＊＊＊ $\mathrm{p}<0.0005$
ALDO：aldosterone $10^{-7} \mathrm{~mol} / \mathrm{l}$ ，EPLE：eplerenone $10^{-5} \mathrm{~mol} / /$ ，SM：SM $2022010^{-7} \mathrm{~mol} / 1$
$141 \mathrm{mEq} / 1$ 下にアルドステロンを投与した心筋細胞 は細胞面積の増大が見られた。細胞外液ナトリウ ム濃度 $146 \mathrm{mEq} / 1$ 下にアルドステロンを投与した心筋細胞はアルドステロン投与下で更に細胞面積は増大していた。この作用はSM20220 およびエプレ レノンで有意に抑制された。
図 9 は，細胞肥大を確認する為の実験である．細胞外液ナトリウム濃度 $141,146 \mathrm{mEq} / 1$ における アルドステロン $10^{-7} \mathrm{~mol} / /$ 投与，および非投与下に 72 時間培趒した心筋細胞の細胞内 ${ }^{3} \mathrm{H}$－leucine 取り込みと心筋細胞 BNP 遺伝子発現量を検討した。結果は，細胞面積のものとほぼ同様で，${ }^{3} \mathrm{H}$－leucine取り込みと BNP 遺伝子発現量は有意に増加した。 また，この作用はSM20220 およびエプレレノンで抑制された。
図10は細胞外液ナトリウム濃度 $141,146 \mathrm{mEq} / 1$ におけるアルドステロン $10^{-7} \mathrm{~mol} / \mathrm{l}$ 投与，および非投与下に 72 時間培養した心筋細胞の NHE1 遺伝子発現量とNHE1 蛋白量を表わした図である。NHE1遺伝子発現量はナトリウム濃度に拘らず，アルド ステロン投与にてアルドステロン非投与の心筋細

胞群と比べて有意に上昇した。この作用はエプレ レノンで有意に抑制された。これはアルドステロ ンから肥大に至る経路にNHE1 の遺伝子発現が介在することを示している．

考 察

我々は本研究において，細胞外液にナトリウム負荷した仔ラット心筋細胞培養系において，（1）ア ルドステロンは，早期にはNHE1を介して細胞内 ヘナトリウムを流入（非ゲノム作用）させることで高浸透圧による心筋細胞脱水を防ぐ生理学的作用 を有すること，また，（2）アルドステロンは，ナト リウムの長期負荷において，NHE1 を介した心筋細胞肥大作用（ゲノム作用）を有することを示した。

A．高ナトリウム濃度におけるアルドステロンの早期作用について

細胞外液ナトリウム濃度 $146 \mathrm{mEq} / 1$ にて培養した仔ラット心筋細胞では，細胞外浸透圧の上昇によ つて細胞内液喪失が起こり，心筋細胞の縮小を生 じた。また，その縮小した心筋細胞にアルドステ ロンが作用するとナトリウムを細胞内へ流入し，

図10 NHE1 へのアルドステロンの作用（72 時間後）
ALDO：aldosterone $10^{-7} \mathrm{~mol} / /$ ，EPLE：eplerenone $10^{-5} \mathrm{~mol} / /$ ，SM：SM $2022010^{-7} \mathrm{~mol} / /$

プロトンを細胞外へ流出することで細胞膜間の浸透圧較差が減弱されると考えられた。これは阻害実験の結果よりNHE1 を介する非ゲノム作用と思 われた。つまり，細胞外液ナトリウム濃度が高く，細胞外高浸透圧状態である場合，アルドステロン は心筋細胞の脱水から即座に防御する役割を有す る可能性が示唆された。今回の研究では，アルド ステロンの早期作用に関して ${ }^{3} \mathrm{H}$－leucine の取り込 み，BNP 遺伝子発現の変化が認められないことか ら（データ省略），心筋肥大はまだ生じていない段階の反応であることが碓認された。

アルドステロンの心血管系に対する傷害作用に ついては様々な報告があるが，我々は今回初めて アルドステロンが心血管系に対して生理的作用（心保護作用）を有する可能性があることを示唆した。

以前，ヒト臍帯静脈内皮細胞に対し，アルドス テロンが上皮型ナトリウムチャンネル（ ENaC ）を介 して細胞内にナトリウムを流入させて細胞膨張を生じたという報告がある ${ }^{17)}$ 。 ENaC は $\alpha \beta \gamma$ サブユ ニットによって構成されるチャンネルで腎尿細管，腸管，肺胞といった上皮組織にのみ存在すると考 えられていたが $\mathrm{ENaC} \delta$ サブユニットが心臟にも存在するとの報告がある ${ }^{18)}$ 。 $\mathrm{ENaC} \delta$ の心臓に対する作用については不明であるが，今回のアルドステ

ロンの早期作用に NHE1 のみならず ENaC が関与 している可能性も否定はできない。しかし，我々 の実験結果からは NHE1 がその主たる作用である と考えられる。

B．細胞外液の高ナトリウム状態下における アルドステロンの長期作用の考察

72 時間培養を行った心筋細胞の細胞表面積， ${ }^{3} \mathrm{H}$－leucine の取り込み率，BNP 遺伝子発現量， BNP 値の増加により，我々はアルドステロンの長期作用はナトリウム依存性に心筋細胞肥大を誘導 することを示した。エプレレノン，SM20220でこ の作用が抑制できることから，アルドステロンの長期作用はミネラルコルチコイド受容体，NHE1 を介して起こるゲノム作用であることが示された。 NHE1 から心筋細胞肥大に至る過程においては， NHE1を介する細胞内ナトリウムの増加に伴う $\mathrm{Na} / \mathrm{Ca}$ 交換輸送体（NCX）を介した細胞内カルシウ ム異常増加が心筋細胞肥大に関与している可能性 がある ${ }^{19)}$（図11）。

また，NHE1 を介する細胞内 pH の上昇が心筋細胞肥大に関与している可能性も否定できない。 NHE1を介しての細胞内ナトリウム上昇が心肥大 を生じるメカニズムについては不明な点が多く， その解明も今後の課題である。

図11 アルドステロンの心筋肥大作用（長期作用）
細胞外液にナトリウム負荷した仔ラット心筋細胞培養系において，アルドステロンの長期負荷において， NHE1 を介した心筋細胞肥大作用（ゲノム作用）が生じる。

C．高ナトリウム負荷における心臓アルドステロ ン発現の可能性について

一般に，高ナトリウム負荷で副腎からのアルド ステロン分泌は低下し，血中アルドステロン値は低下する ${ }^{20)}$ 。しかしながら，ラットの心血管組織 におけるアルドステロン合成酵素遺伝子発現量は高ナトリウム負荷で上昇することが報告されてい $る^{21)}$ 。以上より，我々は，高塩分食を摂取し高ナ トリウム負荷を続けると，血中のアルドステロン分泌は抑制されるものの，心臓局所の細胞からア ルドステロンが自己分泌，傍分泌され，そのアル ドステロンが短期的には細胞を保護し，そして，長期的にナトリウムとの相互作用を起こして心筋肥大を生じる可能性があると考えている。我々は，心不全や高血圧を有する患者において心臓からア ルドステロンが分泌されていることを報告してい るが22，23），その事実と関連があると思っている．

ヤノマモインディアンのデータは，減塩により血中アルドステロン値は上がっても，心臓局所に おけるアルドステロン分泌は生じず，その結果，心肥大や高血圧を生じないのかもしれない。しか しながら，上記の理論は現時点では机上の空論に過ぎず，今後の重要な研究テーマである。

おわ りに

本研究において，細胞外液にナトリウムを長期負荷した仔ラット心筋細胞培養系において，アル ドステロンが NHE1 を介した心筋細胞肥大作用を

有することが示された。この作用は，おそらくゲ ノム作用であると考えられた。しかし，早期の作用に見られるような非ゲノム作用の意義に関して は不明な点が未だ数多い。

実際の生体においては，循環中 Na 濃度はそれ程変化しない。それは，Na 濃度は，アルドステロン， バソプレッシン，飲水量などの影響を受け，うま く制御されているからである。それならば，当該実験の細胞外液内の Na 濃度を変える実験がどこま で意味のあることか疑問であるかもしれない。し かしながら，過剰食塩捸取では Na 濃度は若干なが ら上昇するとも言われている。よって，当該研究 は何らかの意味をなすと筆者は考えている。 さら には，アルドステロンの早期の Na に関する非ゲノ ム作用には大変重要なメッセージが隠されている と感じており，いずれ徐々に証明していきたい。

文 献

1）Young MJ，Funder JW：Mineralocorticoid receptors and pathophysiological roles for aldosterone in the cardio－ vascular system．J Hypertens 2002；20：1465－8．
2）Gu JW，Anand V，Shek EW，et al：Sodium induces hyper－ trophy of cultured myocardial myoblasts and vascular smooth muscle cells．Hypertension 1998；31：1083－7．
3）Oliver WJ，Cohen EL，Neel JV：Blood pressure，sodium intake，and sodium related hormones in the Yanomamo Indians，a＂no－salt＂culture．Circulation 1975；52：146－51．
4）Vasan RS，Evans JC，Larson MG，et al：Serum aldoster－ one and the incidence of hypertension in non－ hypertensive Persons．N Engl J Med 2004；351：33－41．

5）Yamamuro M，Yoshimura M，Nakayama M，et al：Direct effects of aldosterone on cardiomyocytes in the pres－ ence of normal and elevated extracellular sodium．En－ docrinology 2006；147：1314－21．
6）Orlowski J，Kandasamy RA，Shull GE：Molecular clon－ ing of putative members of the $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger gene family．J Biol Chem 1992；267：9331－9．
7）Wakabayashi S，Shigekawa M，Pouyssegur J：Molecular physiology of vertebrate $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchangers．Physiol Rev 1997；77：51－74．
8）Karmazyn M，Gan XT，Humphreys RA，et al：The myo－ cardial $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchange：structure，regulation，and its role in heart disease．Circ Res 1999；85：777－86．
9）Ebata S，Muto S，Okada K，et al：Aldosterone activates $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchange in vascular smooth muscle cells by nongenomic and genomic mechanisms．Kidney Int 1999；56：1400－12．
10）Karmazyn M，Liu Q，Gan XT，et al：Aldosterone in－ creases NHE－1 expression and induces NHE－1－ dependent hypertrophy in neonatal rat ventricular myo－ cytes．Hypertension 2003；42：1171－6．
11）Dostal DE，Baker KM：Angiotensin and endothelin： messengers that couple ventricular stretch to the Na^{+} $/ \mathrm{H}^{+}$exchanger and cardiac hypertrophy．Circ Res 1998； 83：870－3．
12）Losel RM，Falkenstein E，Feuring M，et al：Nongenomic steroid action：controversies，questions，and answers． Physiol Rev 2003；83：965－1016．
13）Funder JW：The nongenomic actions of aldosterone． Endocr Rev 2005；26：313－21．
14）Harada E，Yoshimura M，Yasue H，et al：Aldosterone induces angiotensin－converting－enzyme gene expres－
sion in cultured neonatal rat cardiocytes．Circulation 2001；104：137－9．
15）Mano A，Tatsumi T，Shiraishi J，et al：Aldosterone di－ rectly induces myocyte apoptosis through calcineurin－ dependent pathways．Circulation 2004；110：317－23．
16）Ebata S，Muto S，Okada K，et al：Aldosterone activates $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchange in vascular smooth muscle cells by nongenomic and genomic mechanisms．Kidney Int 1999；56：1400－12．
17）Oberleithner H，Ludwig T，Riethmüller C，et al：Human endothelium．Target for aldosterone．Hypertension 2004；43：952－6．
18）Yamamura H，Ugawa S ，Ueda T ，et al：Protons activate the δ－subunit of the epithelial Na^{+}channel in humans． J Biol Chem 2004；279：12529－34．
19）Bers DM，Barry WH，Despa S：Intracellular Na^{+}regu－ lation in cardiac myocytes．Cardiovasc Res 2003；57： 897－912．
20）Ye P，Kenyon CJ，Mackenzie SM，et al：Regulation of aldosterone synthase gene expression in the rat adrenal gland and central nervous system by sodium and angio－ tensin II．Endocrinology 2003；144：3321－8．
21）Takeda Y，Yoneda T，Demura M，et al：Effects of high sodium intake on cardiovascular aldosterone synthesis in stroke－prone spontaneously hypertensive rats．J Hy－ pertens 2001；19：635－9．
22）Mizuno Y，Yoshimura M，Yasue H，et al：Aldosterone production is activated in failing ventricle in humans． Circulation 2001；103：72－7．
23）Yamamoto N ，Yasue H ，Mizuno Y ，et al：Aldosterone is produced from the ventricles of patients with essential hypertension．Hypertension 2002；39：958－62．

[^0]: ＊熊本大学大学院医学薬学研究部循環器病態学

