総 説

麻酔とプレコンディショニング

山中寛男＊，林 行 雄＊

プレコンディショニングの概念とそのメカニズム

プレコンディショニングは Murry らによって提唱された概念で，彼らはイヌにおいて冠血管の5分間の虚血を 4 回繰り返した後に 40 分間虚血を与 えると，先行虚血を与えない群と比較して心筋梗塞サイズが縮小することを報告し，もともとは先行する短時間の心筋虚血がその後の心筋梗塞に対 する耐性が増強する現象であり，ischemic precon－ ditioning（IPC）と呼ばれる ${ }^{1)}$ 。その後多くの科学者 の関心を集め，基礎的なメカニズムから臨床への応用まで幾多の研究が発表され，その総説も数多 く存在する ${ }^{2 ~ 13)}$ 。

これまでの研究で，この現象がヒトを含めた幾多の動物にも認められることや種差も存在するこ とも示された。数多くの研究成果があるとはいえ そのメカニズムの全容が明らかになったわけでは ないが，いくつかの重要な因子は同定されつつあ る．図1にプレコンディショニングの細胞内伝達機構の概略を示すが，最もよく知られている経路 としてアデノシン A_{1} 受容体，α アドレナリン受容体，β アドレナリン受容体，δ－オピオイド受容体等がリガンドの結合等により活性化され，連結結合する G 蛋白を活性化，それがホスホリパーゼ C等を介して，ホスファチジルイノシトール 2 リン酸 $\left(\mathrm{PIP}_{2}\right)$ からイノシトール 3 リン酸 $\left(\mathrm{IP}_{3}\right)$ とジアシ ルグリセロール（DG）を産生，DG はprotein kinase C（PKC）を活性化する ${ }^{3,8,11)}$ ．PKC にはいくつかの isoform が存在し，それぞれが細胞膜やミトコンド リアへ移動（translocation）する ${ }^{11,13)}$ 。細胞膜とミト コンドリア表面にはATP 感受性 K^{+}チャネル （KATP）が存在し，PKC の作用によってこれらのチ

[^0]ヤネルが開口する ${ }^{3,11,14)}$ ．細胞膜に存在する K^{+}チ ヤネル（ srcKatP ）は K^{+}を細胞外へ排出し，ミトコ ンドリアに存在する K^{+}チャネル（mitoKATP）は K^{+} をミトコンドリア内へ流入させる。これによりミ トコンドリア内の脱分極を誘導し， Ca^{2+} の流入に よる過負荷の抑制や活性酸素種 ；reactive oxygen species（ROS）の産生，mitochondrial permeability transition pore（mPTP）の開口抑制によってアポト ーシスを抑制する ${ }^{3,5,9,10,15)}$ 。この mPTPを制御する因子として phosphatidylinositol 3－kinase（PI3K），か ら protein kinase B （PKB）（Akt）を経て glycogen synthase kinase 3β（GSK3 β ）を不活性化する経路の存在や PKC と相互にリン酸化を起こすextracellular signal－regulated kinase（ERK）や tyrosine kinase（TK） も知られている。

この分野はいまだ発展途上にあるため，今後こ れ以外にもいくつかのメカニズムが付加されたり，現在の考えが変更されることもありうるだろう。
ここに述べたプレコンディショニングのメカニズ ムは $2 \sim 3$ 時間持続した後に減弱するが，さらに $24 ~ 72$ 時間後に再び心筋保護作用が見られること がわかってきた。 early phase および late phase （second window とも）と呼ぶ．late phase のメカニ ズムは early phaseに比べて情報が少ないが，PKC を介して COX－2 や NO 産生酵素などの蛋白発現を誘導していると考えられている ${ }^{11,13)}$ 。

最近ではプレコンディショニングという考え方 がもともとの梗塞サイズの減少にとどまらず，心機能の改善や不整脈の減少をこの現象のエンドポ イントと捉えることも一般化しており，この概念 がより広くとらえられている．

プレコンディショニングのメカニズムをもとに，薬物を用いてそれと同様の生理作用を誘発するこ とでプレコンディショニングと同じ効果が得られ

図1 プレコンディショニングの細胞内伝達経路（Preconditioning のメカニズム）
現在提唱されているプレコンディショニングの細胞内伝達経路を示す。プレコンディショニングはearly と late の 2 つが存在し，異なる細胞内伝達経路を有する。また複数の伝達経路も存在し，それぞれの意義はいまだ明確でない。

Early phase ではプレコンディショニングのトリガーとなる受容体刺激は G 蛋白を活性化し，つづいて様々な細胞内伝達系を刺激する。PLC／PLD の活性化は PIP2 から DAG および IP_{2} を産生，DAG は PKC を活性化し， mitoKATP および srcKATP を開口する。または mitoKATP の開口はROSを産生し，これは PKC を刺激し，mitoKATP の開口を促す。PI3K の活性化は PKB（Akt）を活性化，そして GSK3 β を不活性化する。このことは mPTPを閉じ る。また PI3K の活性化はTKを活性化し，mitoKATPの開口と PKC を刺激する。一方，TK は PKC の活性化に続 いて起こることもある．ERK と PKC はお互いに活性化しあう関係とされるが，いずれが先行するかは議論があ る．また NO の存在は mitoKATP の開口に有利に働くが，NO がなくてもプレコンディショニングは起こる。

Late phaseについてはearly phase より不明な点が多い。NF－κ B を介して様々な蛋白合成がそのメカニズムに あり，NOS や HSP があげられる．Late phase では early phase よりNO の果たす役割は大きいとされる．

PLC／PLD：phospholipase C／phospholipase D，PIP2：phospho－isnositol diphosphate，IP3：inositol triphosphate，DAG： diacylglycerol，PKC：protein kinase C，eNOS：endothelial nitric oxide synthase，PI3K：phosphatidylinositol 3－kinase， ERK：extracellular signal－regulated kinase，PKB：protein kinase B，TK：tyrosine kinase，GSK3 β ：glycogen synthase kinase 3β ，srcKatp：sarcolenmmal ATP－sensitive K channel，mitoKatp：mitochondrial ATP－sensitive K channel，ROS： reactive oxygen species，mPTP：mitochondrial permeability transition pore， $\mathrm{NF}-\kappa \mathrm{B}$ ：nuclear factor $-\kappa \mathrm{B}$ ，iNOS：inducible nitric oxide synthase，HSP：heat shock protein．

る．これは pharmacological preconditioning といわ れ，そのターゲットは，プレコンディショニング のトリガーとなる受容体，その細胞内伝達機構で ある G 蛋白，各種 kinase（特に PKC）そして最終的 な作用点として有力な KATP である。麻酔薬とくに セボフルレン等の揮発性麻酔薬や麻薬にその作用 があることから，この現象は麻酔科医にとっても関心の高いものとなった。とくに麻酔薬によるプ レコンディショニングを IPC と区別して anesthetic preconditioning（APC）と呼び，この分野に限っても莫大な研究が行われてきた。本総説では便宜的に我々麻酔科医が麻酔薬として用いている薬剤によ るプレコンディショニング作用を APC と称させて

いただきたい．

揮発性麻酔薬とプレコンディショニング

揮発性麻酔薬についてはイソフルレン，セボフ ルレン，エンフルレン，デスフルレンなどの揮発性麻酔薬が APC 作用を持つことは多くの研究によ り示されてきた ${ }^{14 ~ 57)}$ 。それらの APC による心筋保護作用はアデノシン A_{1} 受容体阻害薬によって抑制 される ${ }^{17,18,30,31)}$ ことより，アデノシン A_{1} 受容体の関与が考えられる。また，ヒトの心筋において酸素供給を 30 分間停止する前に 15 分間の 6% デスフ ルレンを投与した場合，再灌流後の心筋収縮力は コントロール群よりも高かったが，フェントラミ
表1 麻酔薬とプレコンディショニングに関する文献一覧

1．基礎研究					
A）揮発性麻酔薬					
麻酔薬	研究材料		研究対象	研究概略	参考 文献
$\begin{aligned} & \text { セボフルレン, } \\ & \text { ブロポフォール } \end{aligned}$	ラット	灌流心	$\mathrm{K}_{\text {ATP }}$	プロポフォール，セボフルレンは再灌流時に心筋保護作用があ るがプロポフォールは $\mathrm{K}_{\text {ATP }}$ と関連がなかった	32
セボフルレン	モルモット	灌流心	Ca	セボフルレンはpreconditioning同様に細胞質内Ca濃度を抑制す るが，Caに対する感受性（収縮力等）は高めた	38
セボフルレン	モルモット	灌流心	mitoK $_{\text {ATP }}$	セボフルレンがmitoK $\mathrm{ATP}^{\text {を開口させてミトコンドリア内 } \mathrm{Ca} \text { 濃度 }}$ を抑制	24
セボフルレン	モルモット	灌流心	Ca	虚血はsystolic，diastolicともに細胞質内へのCa負荷を起こし心機能を低下させるが，セボフルレンは虚血前も虚血後投与もCa負荷を抑制，心機能を改善した	50
セボフルレン	モルモット	灌流心	mitoK $_{\text {ATP }}$	セボフルレンによるpreconditioningは $17^{\circ} \mathrm{C}$ の低体温下の虚血時 にも心機能保護と梗塞サイズの縮小を認め，5－HDにより梗塞サ イズの縮小は拮抗されたが，心機能に変わりはなかった	64
セボフルレン	ウサギ	whole body	late preconditioning との関係	虚血10日後のlate preconditioning作用をセボフルレンが相加的 に増強し，それにmitoK ${ }_{\text {ATP }}$ の開口が関与	19
セボフルレン	ラット	心室細胞	PKC，mitoK ${ }_{\text {ATP }}$ ，ROS	セボフルレンのpreconditioning作用にPKC，mitoK ${ }_{\text {ATP }}$ ，ROSの関与	22
セボフルレン	ヒト	心房標本	$\mathrm{K}_{\text {ATP }}, \mathrm{A}_{1}$ 受容体	セボフルレンが無酸素後の心厉標本の収縮能を保持，それに mitoK $_{\text {ATP }}, \mathrm{srcK}_{\text {ATp }}$ の開п， A_{1} 受容体の関与	31
セボフルレン	モルモット	灌流心	ROS，PKC－ε	セボフルレンのpreconditioning作用はPKC－ε の活性化を介する が，それはROS産生に続いてに起こる	42
セボフルレン	モルモット	灌流心	虚血時間と心機能	セボフルレンは虚血時間25－40分後の再灌流時に心機能の改善 を示すが虚血時間が長くなると失われる	43
セボフルレン	モルモット	灌流心	NADH，mitoK ${ }_{\text {ATP }}$	セボフルレンの暴露はミトコンドリア内のNADH（NADHの低下はミトコンドリアのエネルギー状態のいい指標）を上昇させ るが，虚血時のNADHの異常な上昇は抑制する。これには $\mathrm{mitoK}_{\text {ATP }}$ の開口が関与	44
セボフルレン	モルモット	灌流心	ROS， mitoK $_{\text {ATP }}$	セボフルレンはROSを産生（虚血時は逆に抑制）しこれが， mitoK ${ }_{\text {ATP }}$ 開口を促す	67
セボフルレン	モルモット	灌流心	ROS	セボフルレンのpreconditioning作用にROSの関与する。セボフル レンは虚血後のATP産生を改善し，ROS産生を抑制する	68
セボフルレン	ラット	心室細胞	ROS，PKC－ ， mitoK $_{\text {ATP }}$	セボフルレンのpreconditioning作用にPKC－δ ，mitoK ${ }_{\text {ATP，}}$ ，ROSの関与	14

麻酔薬	研究材料		研究対象	研究概略	参考 文献
セボフルレン	モルモット	灌流心	心機能	セボフルレン $2.8 \% 15$ 分 1 回より も 5 分 2 回のほうが梗塞サイズが縮小し， $1.4 \% 2$ 回と $2.8 \% 15$ 分 1 回と同程度の効果があった	46
セボフルレン	ラット	whole body	mitoK $_{\text {ATP }}$	セボフルレンの precondtioning およびpostconditioning 作用に mitoK $_{\text {ATP }}$ の開口が関与	23
セボフルレン	モルモット	灌流心	年齢の影響	セボフルレンのpreconditioning作用は若年が老年より強い	57
セボフルレン	ラット	灌流心	心機能	セボフルレン投与後 24 h 後と 48 h 後にdelayed preconditioningが あり，48h後がより強い	56
イソフルレン	ウサギ	whole body	心筋梗塞巢	イソフルレンが梗塞サイズを縮小	16
イソフルレン	イヌ	whole body	A_{1} 受容体	イソフルレンが再灌流後の心機能の回復を促し，それに A_{1} 受容体の関与	33
イソフルレン	イヌ	whole body	$\mathrm{K}_{\text {ATP }}$	イソフルレンによる梗塞巣の減少に $\mathrm{K}_{\mathrm{ATP}}$ が関与し，投与終了後 30分後でもその作用は残る（memory phaseの存在）	37
イソフルレン	ウサギ	whole body	$\begin{gathered} \text { mitoK }_{\text {ATP }}, \\ \text { stretch-activated channel } \end{gathered}$	イソフルレンのpreconditioning作用にmito $\mathrm{K}_{\text {ATP }}$ ，stretch－activated channelの関与	20
イソフルレン	イヌ	whole body	Gi 蚠白	イソフルレンのpreconditioning作用にGi 䖪白の活性化が関与	52
イソフルレン	ウサギ	whole body	ROS	イソフルレンはROSを産生し，そのpreconditioning作用はROS scavengerで失われる	27
イソフルレン	イヌ	whole body	血糖値と梗塞巣	血糖値が高くなるとイソフルレンのpreconditioning作用は減弱 する	47
イソフルレン	イヌ	whole body	イソフルレン浱度と梗塞巣	イソフルレンの梗塞巣の縮小作用は 0.25 MAC でも認められ，明確な用量依存性はない。低濃度ではその作用の強さは冠血流相関関係があるが，高濃度ではなかった	48
イソフルレン	ウサギ	whole body	mitoK ${ }_{\text {ATP }}$ と ROSの関係	セボフルレンの preconditioning作用に mito $\mathrm{K}_{\text {ATP }}$ の開口に伴う ROS産生が関与	21
イソフルレン	ウサギ	whole body	ROS	イソフルレンはROSを産生し，そのpreconditioning作用はROS scavengerで失われる	26
イソフルレン	ラット	灌流心	PKC isoforms， mitoK $_{\text {ATP }}$	イソフルレンのpreconditioning作用にPKC－δ ，mitoK ATP の関与	35
イソフルレン	ウサギ	whole body	COX－2	イソフルレンはlate phase preconditioning作用（ 24 h 後）があり， COX－2がこれに関与	29
イソフルレン	ラット	whole body	PKC，TK，ROS，mitoK ${ }_{\text {ATP }}$	イソフルレンの梗塞巣の減少にROS， $\mathrm{PKC}, \mathrm{TK}, \mathrm{mitoK}_{\mathrm{ATP}}$ ，の関与 とPKC－ε, δ のtranslocation	34
イソフルレン	ラット	灌流心	mitoK ${ }_{\text {ATP }}$	アデノシンとNO donorはイソフルレンのpreconditioning作用を増強する。それにはmitoK $\mathrm{ATP}^{\text {を }}$ を介するものと介さない経路の存在	39
イソフルレン	イヌ	whole body	COX－2	イソフルレンの梗塞巣の減少にCOX－2が関与	41

麻酔薬	研究材料		研究対象	研究概略	参考
イソフルレン	ラット	灌流心	PKC	イソフルレンは細胞内エネルギー（ATP，リン酸クレアチン）を維持，PKC－δ, ε の膜へtranslocationを招く	55
イソフルレン	ウサギ	whole body	eNOS	イソフルレンはlate phase preconditioning作用（ 24 h 後）があり， eNOSがこれに関与	28
イソフルレン	ラット	灌流心	mPTP，GSK3 β	イソフルレンの虚血後の再灌流時の投与（postconditioning）は㤦塞巣を縮小するが，それはGSK3 β のリン酸化に伴う mPTPの抑制による	51
イソフルレン	ラット	whole body	イソフルレン濃度と PKC－ε	イソフルレン 0.4 MAC でも PKC－ε のリン酸化 および preconditinong作用。濃度が高いとPKC－ε は少ない	53
イソフルレン	ウサギ	whole body	hydroxy radical	いわゆる虚血によるpreconditioningはhydorxy radicalの産生を抑制したが，イソフルレンはその作用がない	54
イソフルレン	マウス	whole body	mitoK ${ }_{\text {ATP }}$, srcK $_{\text {ATP }}$ ， アポトーシス	イソフルレンのpreconditioningにmitoK ATP の関与，再灌流2週間後の心機能の改善とアポトーシスの抑制	15
イソフルレン	ラット	心室組胞	mitoK ${ }_{\text {ATP }}, \operatorname{srcK}_{\text {ATP }}$	イソフルレンによるpreconditioningは活性酸素による心室細胞死を抑制し， $\mathrm{mito}_{\mathrm{ATP}}$ ， $\mathrm{srcK}_{\mathrm{ATP}}$ がそれに関与するが役割は異な る。	58
イソフルレン	ラット	灌流心	MAPK	心觔ERKはイソフルレン投与直後に変化はないが，虚血灌流時 に増加がみられ（Western blot），これがpreconditioning作用に関与	69
デスフルレン	イヌ	whole body	mitoK ${ }_{\text {ATP }}, \mathrm{srcK}_{\text {ATP }}$	デスフルレンのprecnditioning作用には $\mathrm{mitoK}_{\mathrm{ATP}}$ ， $\mathrm{srcK}_{\mathrm{ATP}}$ のいず れも関与	25
デスフルレン	ヒト	心房標本	$\operatorname{mitoK}_{\text {ATP }}, \mathrm{A}_{1} / \alpha / \beta$ 受容体	デスフルレンが無酸素後の心房噤本の収縮能を保持し，それに mitoK ${ }_{\text {ATP }}$ の開口， $\mathrm{A}_{1} / \alpha / \beta$ 受容体の活性化が関与	18
デスフルレン	ラット	whole body	PKC－ε ，ERK1／2	デスフルレンの梗塞巣の減少のメカニズムにERK1／3の活性化 があり，これがPKC－ε を活性化する	40
デスフルレン	ウサギ	whole body	TK	デスフルレンのpreconditioning作用にTKの関与はない	45
デスフルレン	ウサギ	$\begin{gathered} \text { 心笳ミトコン } \\ \text { ドリア } \end{gathered}$	mPTP，mitoK ${ }_{\text {ATP }}$	デスフルレンはmPTPを開口するためより多くのCa負荷を必要 とさせるが，これに $\mathrm{K}_{\mathrm{ATP}}$ が関与	63
$\begin{gathered} \text { ハロセン, エンフルレン, } \\ \text { イソフルレン } \end{gathered}$	ウサギ	灌流心	A_{1} 受容体，PKC	3 つの揮発性麻酔薬にpreconditioningを認め， A_{1} 受容体と PKC の活性化がそれに関与	17
イソフルレン，ハロセン	ヒト	心房標本，心房細胞	A_{1} 受容体， $\mathrm{K}_{\text {ATP }}$	イソフルレンが無酸素後の心房標木の収縮能を保持，それに $\mathrm{mito}_{\mathrm{ATP}}$ の開口， A_{1} 受容体が関与。ハロセンにその作用はない （心房噤本）。イソフルレンは $\mathrm{K}_{\text {ATP }}$ に影響しないが，ハロセンは抑制した（心房紐胞）	30

麻酔薬	研究材料		研究対象	研究概略	$\begin{aligned} & \text { 参考 } \\ & \text { 文献 } \end{aligned}$
$\begin{gathered} \hline \text { イソフルレン, セボフル } \\ \text { レン, プロポフォール, } \\ \text { ペントバルビタール } \end{gathered}$	モルモット	心室細胞	mitoK $_{\text {ATP }}$	揮発性麻酔薬によるmitoK $\mathrm{A}_{\mathrm{ApP}}$ の開ロ，プロポフォール，ペント バルビタールは影響なし	66
セボフルレン， イソフルレン	ラット	心室細胞	$\operatorname{srcK}_{\text {ATP }}$, mitoK $_{\text {ATP }}, \mathrm{PKC}$ ， A_{1} 受容体，NO	セボフルレン，イソフルレンによるpreconditioningは虚血に伴 う心筋細胞死を抑制し，その機序に $\mathrm{mito}_{\text {ATP }}, \mathrm{PKC}, \mathrm{A}_{1}$ 受容体， NOの関与	59
イソフルレン，セボフル レン，フェンタニル等	ラット	心室細胞	mitoK $\mathrm{K}_{\text {ATP }}$ 開口薬	mitoK ${ }_{\text {ATP }}$ の開口薬は麻酔薬により様々な影響を受ける	65
イソフルレン，笑気	ラット	whole body	笑気	笑気はpreconditioning作用もなく，イソフルレンと併用しても作用增強はない。さらにPKC，TKのリン酸化も translocationも起 こさない	49
B）静脈麻酔薬					
モルヒネ	ラット	whole body	$\mathrm{K}_{\text {ATP }}$ ，オピオイド受容体	モルヒネのpreconditioning作用はオピオイド受容体， $\mathrm{K}_{\text {ATP }}$ が関与	76
モルヒネ	ラット	whole body	δ－オピオイド受容体	モルヒネのpreconditioning作用に $\delta-$－ピオイド受容体の関与	77
δ－オピオイド アゴニスト	ラット	whole body	G蛋白， $\mathrm{K}_{\text {ATP }}$ ， δ－受容体	δ－アゴニストであるTAN－67にpreconditioning作用があり，δ－ オピオイド受容体，G蛋向の活性化， $\mathrm{K}_{\mathrm{ATP}}$ の開Пが関与	78
δ－アゴニスト	ラット	whole body	ROS	δ－アゴニストのlate phase preconditioning作用は δ 受容体の関与は少なく，ROSが主体的に働く	79
ケタミン	ウサギ	whole body	心機能，梗塞巣	ケタミンはIPCを消失させるが， $\mathrm{S}(+)$ ）ケタミンにはその作用が ない	74
ケタミン	ラット	灌流心	ケタミン異性体	ケタミンのIPC消失作用はR（－）ケタミンによるもので， $\mathrm{S}(+)$ ヶ タミンはその作用がない	75
$\begin{gathered} \text { イソフルレン, TAN-67, } \\ \text { BW373U86 } \end{gathered}$	ラット	whole body	$\mathrm{K}_{\text {ATP }}$	イソフルレンと δ－アゴニストは相加的に再灌流後の梗塞巣を縮小	36
プロポフォール	ラット	心室細胞	$\operatorname{srcK}_{\text {ATP，}}$, mitoK $_{\text {ATP }}$	プロポフォールは臨床濃度では $\mathrm{K}_{\text {ATP }}$ に影響を与えない	72
モルヒネ，イソフルレン	ラット	whole body	mitoK $_{\text {ATP }}, \delta-$ オピオイ ド受容体	イソフルレンとモルヒネのpreconditioning作用は相加的に働 く。これにmitoK ATP $^{\text {の開口が関与 }}$	61
プロポフォール	ラット	心室細胞	PKC，トロポニンI， myosin light chain 2	プロポフォールはPKCを活性化し，続いてトロポニンIおよび myosin light chain 2 のリン酸化を起こす	71
レミフェンタニル	ラット	whole body	$\delta / \kappa / \mu-\text { オピオイド }$ 受容体	レミフェンタニルは再灌流後の梗塞巣を縮小したが，その作用 は δ / κ 受容体拮抗薬で消失，μ 受容体拮抗薬では部分的に消失	80
レミフェンタニル	ラット	灌流心	$\delta / \kappa / \mu$－オピオイド受容体， PKC ，mitoK ${ }_{\text {ATP }}$	体，PKC， mitoK $_{\text {ATP }}$ の関与	81

麻酔薬	研究材料		研究対象	研究概略	
ケタミン	ヒト	心房標本	$\mathrm{K}_{\text {ATP }}, \alpha / \beta$ 受容体	ケタミンは無酸素後の心房標本の収縮能を保持。その作用には $\mathrm{K}_{\mathrm{ATP}}, \operatorname{mitoK}_{\mathrm{ATP}}, \alpha / \beta$ 受容体の関与	73
$\begin{gathered} \text { フルマゼニル, } \\ \text { ミダゾラム } \end{gathered}$	ウサギ	whole body	$\mathrm{mitoK}_{\mathrm{ATP}}$ ，ベンゾジアゼ ピン受容体	フルマゼニルにpreconditioning作用（梗塞巣の減少）が見られる が，ミダゾラムにはない。フルマゼニルの作用はミダゾラムお よび5－HDで抑制された	62
ブロポフォール	ラット	心室細胞	PKC isoforms	プロポフォールによるPKC－$\alpha, \delta, \varepsilon, \xi$ の活性化	70
2．臨床研究					
ニコランジル	ヒト		心電図	腹部手術においてcoronary riskのある患者にニコランジルを術中投与すると術中の心筋虚血発生率（心電図変化）が有意に低トした	88
プロポフォール vs セボフルレン	ヒト		トロポニンI	セボフルレンはCPB36h後までの心機能・トロポニンIの値がプ ロポフォールに勝る	82
セボフルレン vs プロポフォール	ヒト		$\begin{aligned} & \text { BNP, シスタチンC, } \\ & \text { CK-MB, トロポニンI } \end{aligned}$	on－pump CABGでarrest㚗前のセボフルレンはプロポフォール に比べてBNP，cystatinCが低かったが，CK－MB，トロポニンTは差がなかった。セボフルレンではPKC－δ, ε ともtranslocationが見られた	86
セボフルレン	ヒト		PECAM－1，カタラーゼ， heat shock protein70	on－pump CABGでarrest自前のセボフルレン投与群は非投与群 に比べて心房絒胞でのPECAM－1のtranscriptionを下げ，カタラ一ゼは上がった。Heat shock protein70は差がなかった。術後1午以内の心疾患の発生率はセボフルレン投与群が低かった	87
セボフルレン vs デスフルレン vs プロポフォール	ヒト		トロポニンI	on－pump CABGでプロポフォールはセボフルレン，デスフルレ ンよりもCPB直後の心機能が恶く，トロポニンIも高かった	83
$\begin{gathered} \text { セボフルレン vs デスフ } \\ \text { ルレン vs プロポフォール } \\ \text { vs ミダソソラム } \end{gathered}$	ヒト		トロポニンI	on－pump CABGでセボフルレン，デスフルレンはプロポフォー ル，ミダゾラムよりもICU日数，術後トロポニンI，カテコラミ ン必要例ともに低かった	84
ニコランジル	ヒト		HFABP，CK－MB， トロポニンT	OPCABで術当1から術後111目までニコランジルを持続投与す ると HFABPの値が低くなる	89
セボフルレン	ヒト		トロポニンI，CK－MB， IL－6，CRP	OPCABで術後 24 h までのトロポニンIはセボフルレンよりプロ ポフォールが高かった。CK－MBに差はなかった。逆にIL－6はセ ボフルレンが高かったがCRPは低かった	85

$\mathrm{K}_{\text {ATP }}$ ：mitochondrial ATP－sensitive K channel， mito $_{\text {ATP }}$ ：mitochondrial ATP－sensitive K channel，PKC ：protein kinase C ，ROS ：reactive oxygen species，TK ： tyrosine kinase，COX－2：cyclooxygenase－2，eNOS ：endothelial nitric oxide synthase，GSK3 β ：glycogen synthase kinase 3β ，mPTP ：mitochondrial permeability transition pore，srcK ${ }_{\text {ATP }}$ ：sarcolenmmal ATP－sensitive K channel，ERK ：extracellular signal－regulated kinase，MAPK ：mitogen－activated protein kinase， PECAM－1 ：platelet－endothelial cell adhesion molecule－1，HFABP ：human fatty acid binding protein

ンやプロプラノロールの同時投与によってこれら の効果は失われた ${ }^{18)}$ 。このことよりデスフルレン では α アドレナリン受容体や β アドレナリン受容体の関与が示唆された。

これらの受容体は G 蛋白連結型受容体であり， これらの受容体にリガンドが結合することにより G 蛋白を活性化する ${ }^{3,11)}$ 。Toller らはイヌにおいて 60 分間の冠血管梗塞前に 75 分間イソフルレンを 1 MAC 投与することで再灌流後の梗塞サイズは縮小するが，この効果は百日咳毒素（PTX）によって抑制されることから，APC においてPTX 感受性 G蛋白が関与している ${ }^{522}$ 。ウサギの灌流心において ハロセンの APC 作用は PKC 非特異的阻害薬であ る cheleythreneによって抑制された ${ }^{177}$ 。また，ラ ットの心筋において 15 分間の 3.8% セボフルレン投与は 60 分の代謝抑制後の心筋収縮力が改善させ たが，この作用も cheleythrene によって抑制され た22）これらから PKC の関与が示唆されるが， PKC には $\alpha, \delta, \varepsilon, \xi$ などの isoform があり揮発性麻酔薬のAPC に関与するものとしては δ と ε が考 えられている，ラットの灌流心において 30 分の冠血管虚血の前に 2.2% イソフルレンを 15 分間投与 すると，PKC－δ と ε の細胞膜への translocation が認められるが PKC－α は変化が見られなかった ${ }^{55)}$ 。同じくラットの灌流心において 40 分の冠血管虚血 の前に 2.1% のイソフルレンを 15 分間投与すると，再灌流後に PKC－δ がミトコンドリアへ，PKC－ε が細胞膜へ translocationすることが報告された ${ }^{35)}$ 。 ラットにおいて 30 分の冠血管閉塞の前に 1 MAC のイソフルレンを 30 分間投与すると，再灌流後の梗塞サイズがコントロール群よりも縮小するが， この効果は PKC－δ 阻害剤である rottlerin および $\mathrm{PKC}-\varepsilon$ 阻害剤である PKC－ε V1－2 peptide のどちら によっても抑制された。このことより PKC－ε は細胞膜へ translocation し 細胞膜の srcKATPを開口， PKC－δ はミトコンドリアへ translocation し mito－ KATP を開口するというシグナル伝達経路が想定さ れる ${ }^{344}$ ．Novalija らのモルモット灌流心を用いた研究ではセボフルレンによるAPC が PP149（PKC－ε の阻害薬）で抑制されるが，PP101（PKC－δ の阻害薬）では抑制されないことから，PKC－ε の関与を示 した ${ }^{42)}$ 。一方，Bouwman らはラットの心筋におい て 30 分間の心筋虚血の前に 15 分間の 3.8% セボフ

ルレンを投与すると再灌流後に PKC－δ が細胞膜へ translocationすることを示した ${ }^{14}$ 。また，イソフル レンにおいてもラットにてPKC－δ の細胞膜への translocation の報告がある ${ }^{49)}$ 。このように APCに おけるPKC の isoform の役割はいまだ議論がある といえる。

KATP は有力な最終的な作用点であるが，これに は細胞膜に存在する $\operatorname{srcKATP}$ およびミトコンドリ ア膜に存在する mitoKATP の 2 種類がある。この 2 つの K^{+}チャネルの選択的な阻害薬があり，これら を用いていずれのチャネルが APC に関与している かが検討されてきた。Toller らは srcKATP の選択的阻害剂の HMR－1098によりデスフルレンの APC が抑制されたと報告し ${ }^{25)}$ ，Marinovic らはラットの心室細胞に対して 1.2% イソフルレンの 20 分間投与 が 17 分間の酸化ストレスに対する細胞死の割合を減少させたが，この効果は HMR－1098 および mi－ toKatP の選択的阻害剤の 5－hydoxyxidecanoate（5－ HD）で抑制された ${ }^{58)}$ と報告した。一方，Tanaka ら のラットの心室細胞における研究では 2.8% セボフ ルレンおよび 1.2% イソフルレンによる APC は $5-$ HD では抑制されるが HMR－1098 では維持された 59）」らに，Tsutsumi らはマウスにおいて 30 分間 の冠血管閉塞の前に 30 分間の 1 MAC イソフルレ ンを投与することによる再灌流後の梗塞サイズ縮小効果は 5－HD では抑制されるが HMR－1098は影響しなかったとした ${ }^{15)}$ 。このように $\operatorname{srcKATP}$ の APCにおける関与には一定の見解に至っていない が，少なくとも mitoKATPが APCに強く関与して いることでは多くの研究が一致している ${ }^{18 \sim 23,60 \sim 66)}$ ．

揮発性麻酔薬のAPC による心筋保護作用におい てROSの果たす役割も少なくない。Ludwig らは ラットにおいて 30 分の冠血管閉塞に前に 1 MAC のイソフルレンを 30 分間投与することによる心筋保護作用が ROSスカベンジャーである N－acetyl－ cysteine（NAC）によって抑制されることを報告し た ${ }^{34)}$ ．Müllenheim らはウサギにおいて 30 分の冠血管閉塞の前に 1 MAC のイソフルレンを 15 分間投与することにより見られる心筋保護作用は ROS のスカベンジャーであるN－（2－mercaptoproprionyl） glycine（2－MPG）や Mn（III）tetrakis（4－benzoic acid） porphyrine chloride（MnTBAP）によって抑制される とした ${ }^{277}$ ．Ruijter らはラットの心筋において 60 分

の代謝抑制の前に 15 分間の 3.8% セボフルレン投与を行ったあとに見られる心筋保護作用は2－MPG で抑制された ${ }^{22)}$ 。 さらに揮発性麻酔薬が ROS 産生 に影響する報告もみられる。Tanaka らはウサギに おいて 1MAC のイソフルレンを 30 分間投与する ことにより ROS が産生されることを示し ${ }^{26)}$ ， Kevin らはモルモットの灌流心において 30 分の心筋虚血の前にセボフルレンを計 10 分間投与すると， コントロール群と比較して再灌流後2時間までの ROS 産生量が有意に抑えられたと報告している ${ }^{67)}$ 。 Novalija らはモルモットの灌流心において 30 分間 の心筋虚血前に 3.2% セボフルレンを計 4 分間投与 すると，コントロール群と比較して再灌流 5 分後 の ROS 産生量が少なかったと報告している ${ }^{68)}$ 。一見これらの報告は矛盾するように思える。 しかし， ROS は細胞毒であり，基本的は生体にとってあり がたくないが，揮発性麻酔薬は虚血前に少量の ROS を産生することで虚血再灌流後の大量のROS産生を抑制し，細胞の障害を防いでいるとの解釈 が成り立つ。揮発性麻酔薬による ROS 産生制御に いたるメカニズムは今後の課題であろうが， Novalija らはモルモットの灌流心において 30 分間 の心筋虚血の前に計 4 分間の $2.5 \% セ ホ ゙ フ ル レ ン を ~$投与した場合，再灌流後5分間までのROS 産生が抑制されたが，cheleythreneをセボフルレンと同時に投与してもこの効果は影響されず，ROS 産生制御の下流に PKC が存在することを示唆した ${ }^{42)}$ 。

プレコンディショニングについては様々な細胞内伝達経路の存在が示されているが（図1），最近の APC に関する研究でもその多彩な経路に言及する ものが報告されている．イソフルレンの APC に ERK の活性化が関与 ${ }^{69)}$ ，また postconditioning であ るがGSK3 β の不活性化から mPTP の抑制がこれに関与する ${ }^{51)}$ という報告がある。またデスフルレン の APC においても TK や ERK，mPTP の抑制がそ のメカニズムとして示された ${ }^{40,45,63)}$ ．プレコンディ ショニングのメカニズムがより解明するにつれ， APC についても研究が追随していくものと思われ る。

セボフルレンやイソフルレン等の揮発性麻酔薬 に対するメカニズムの研究が進む一方でハロセン や吸入麻酔薬の笑気については報告が少ない。 Weber らはラットに 60% 笑気を 5 分間投与した後

に 25 分間の冠血管閉塞を起こした場合，コントロ ール群と比較しても梗塞サイズに変化はなく， PKC－ε のリン酸化や translocation も見られなかっ たと報告している ${ }^{49)}$ 。ウサギの灌流心に対して 5分間ハロセンを投与後に 30 分の冠血管閉塞を起こ すと，梗塞サイズが縮小した ${ }^{17)}$ という報告がある一方，ヒトの心筋において酸素供給を 15 分間停止 する前に 5 分間の 1% ハロセンを投与した場合，再灌流後の心筋収縮力の回復は見られなかった ${ }^{30)}$ と する報告もある。ハロセンはセボフルレンやイソ フルレンに比べて臨床応用が少ないためか，その APC にはあまり関心が払われていないようである．

静脈麻酔薬とプレコンディショニング

現在最も多く使用される静脈麻酔薬であるプロ ポフォールについて Mathur らはラットの灌流心に おいて 60 分間の心筋虚血の前に $35 \mu \mathrm{M}$ のプロポフ オールを 15 分間投与すると再灌流後 60 分間にお ける心機能の改善を報告している ${ }^{32)}$ 。また， Wickley らはラットの心筋細胞に $10 \mu \mathrm{M}$ のプロポ フォールを投与すると PKC－α および δ が z 線へ， PKC－ε が核周囲へ，PKC－ξ が核内へ translocation すること ${ }^{70)}$ ，また Kanaya らはラットの心筋細胞に $30 \mu \mathrm{M}$ のプロポフォールを投与すると PKC $-\alpha$ の細胞質から細胞膜への translocationを示した ${ }^{71)}$ 。こ れらの研究結果はプロポフォールにもAPC作用が ある可能性を示唆するものであろう。一方， Kawano $^{72)}$ はラット心筋細胞においてプロポフォ ールが臨床濃度では KATP に影響を与えないこと （高濃度では影響がある）を示し，Kohro ${ }^{66)}$ らはモル モット心室細胞 KATP に対してプロポフォールは揮発性麻酔薬のように開口を促さないことを示した。 プロポフォールの作用についてはその濃度の問題 を含めて明確でなく，後述する臨床試験において もその有効性は懐疑的である。

ケタミンにおいては，ヒトの心筋において 30 分 の心筋虚血の前に 15 分のラセミ体ケタミンおよび S（＋）－ケタミンを投与すると再灌流後 60 分までの心機能がコントロール群と比較して改善し，この効果は HMR－1098，5－HD，フェントラミン，プロプ ラノロールの同時投与によって抑制された ${ }^{73)}$ が， $\mathrm{R}(-)$－ケタミンは IPC による心筋保護作用を抑制 することが報告されている ${ }^{74,75)}$ 。ケタミンに関して

はいまだに報告例が少なく，APC の可能性とその メカニズムの解明にはさらなる研究が必要といえ る。

オピオイドの APC については揮発性麻酔薬より以前から指摘されていた。Schultz らはラットにお いて 30 分間の冠血管閉塞の前に $300 \mu \mathrm{~g} / \mathrm{kg}$ のモル ヒネを計 15 分間かけて投与すると再灌流後の梗塞 サイズがコントロール群と比較して縮小したが， この効果は非特異的オピオイド受容体アンタゴニ ストであるナロキソンによって抑制されることを示した ${ }^{76)}$ 。 さらに彼らは同様の実験系において δ－ オピオイド受容体の選択的アンタゴニストである naltrindole で抑制されたと報告した ${ }^{77)}$ 。これに加 えて，δ－受容体アゴニストである TAN－67にも同様の心筋保護作用があり，この効果は δ－受容体の選択的アンタゴニストである 7－benzylidenenalt－ mrexone（BNTX），KATP の非選択的阻害剤の glibenclamide および PTX で抑制された ${ }^{78)}$ 。これら の報告から，δ－受容体がアデノシン A_{1} 受容体と同 じように PTX 感受性 G 蛋白（Gi）を介したシグナル伝達により KATP を開口させることによって心筋保護作用を発現していることが考えられる。また，δ －受容体による遅発性のプレコンディショニングは フリーラジカルを介するものとする研究もある ${ }^{799}$ ． フェンタニルについては Zaugg らがラット心室細胞で diazoxide（KATP 開口薬）の作用を増強し，この作用にはPKC が関与することを示した ${ }^{65)}$ 。しかし ながら，心筋には μ－受容体はないとされるので， この作用がどのような機序で起こったかははっき りしない。 Zaugg らはレミフェンタニルのAPCに ついてもラットにおいて 30 分間の心筋虚血の前に 15 分間レミフェンタニルを投与すると梗塞サイズ が縮小，この効果は naltrindole，κ－受容体選択的阻害薬である nor－binaltorphimine および μ－受容体選択的阻害薬である D－Phe－Cys－Tyr－D－Trp－Orn－ Thr－Pen－Thr－NH2（CTOP）で抑制された。しかし IPC に対しては naltrindole，nor－binaltorphimine は抑制したがCTOP は部分的にしか抑制しなかった ${ }^{80)}$ 。さらにラットの灌流心において同様の実験を行い，レミフェンタニルの心筋保護作用が naltrin－ dole，nor－binaltorphimine，cheleythrene，5－HDに よって抑制されるが，CTOP によっては抑制され ないことを報告した ${ }^{81}$ ，レミフェンタニルの心筋

保護作用において PKC および mitoKATP の関与も示唆されるとともに，ラットの心筋細胞には存在 しない μ－受容体が心臓外のメカニズムで関与して いることをも示唆している。

プレコンディショニングの臨床麻酔への応用

麻酔薬の持つ APC 作用を臨床麻酔管理に応用で きれば，周術期の心筋保護，ひいては予後の改善 につながる可能性がある。これまで，心機能や生化学マーカー等を比較した短期的な研究がいくつ か報告された。de Hert らはセボフルレンがプロポ フォールと比較して on－pump CABG 術後 36 時間以内の心機能低下，トロポニンIの上昇が少なか った ${ }^{82)}$ ，プロポフォールはセボフルレン，デスフ ルレンと比較して on－pump CABGの人工心肺離脱直後の心機能が悪く，トロポニンIも高かった ${ }^{833}$ ， また on－pump CABG でセボフルレン，デスフルレ ン使用群はプロポフォール，ミダゾラム使用群よ りも ICU 滞在日数が短く，術後のトロポニンIが低く，カテコラミンサポート症例も少なかったこ とを報告した ${ }^{84)}$ 。さらに Garcia らはセボフルレン の投与方法にも言及し，人工心肺前後を通じてセ ボフルレンを用いるとトロポニン I が低値であり，人工心肺後の心収縮能も保たれ，ICU 滞在期間も短くなることを示した ${ }^{85)}$ 。Corzen らは off－pump CABG （ OPCAB ）でセボフルレン麻酔とプロポフォ ール麻酔を比較すると術後 24 時間までのトロポニ ンIの値はセボフルレン麻酔が有意に低いことを示した ${ }^{86)}$ 。Julier らは on－pump CABGにおいて arrest 直前にセボフルレンを 10 分間投与した群は投与しない群に比べてBNPとシスタチンCが低か ったが，CK－MBとトロポニンTの値に有意差が なかったと報告している ${ }^{877}$ 。これらの報告を見る限り，セボフルレンはプロポフォールに比して臨床において心筋保護的な作用が認められる。次に プレコンディショニングを用いた周術期心筋保護 としてその機序を参考にプレコンディショニング を惹き起こす薬剤を用いることが考えられ，その目的にかなう薬剤がニコランジルである。ニコラ ンジルを周術期管理に用いた報告では心筋虚血を抑制し保護的との報告があり，今後麻酔科領域で応用が広がるかもしれない ${ }^{88,899}$ 。今から 10 年前に Mangano $5^{90,91}$ が β 遮断薬による周術期の心筋保

護が術後 2 年にわたる長期予後に有意な影響をも たらすことを発表したが，同様に揮発性麻酔薬の APC を用いることで長期予後に影響を与えること は当然期待してもいいものと思われる。事実 on－ pump CABG でarrest 直前に 10 分間セボフルレン を投与した群は非投与群に比べて術後1年以内の冠血管イベント発生率が低かったと報告してい 3^{85} 。

文 献

1）Murry CE ，Jennings RB，Reimer KA：Preconditioning with ischemia：a delayed of lethal cell injury in ischemic myocardium．Circulation 1986；74：1124－36．
2）Yellon DM，Downey JM：Preconditioning the myocar－ dium：from cellular physiology to clinical cardiology． Physiol Rev 2003；83：1113－51．
3）Tanaka K，Ludwig LM，Kersten JR，et al：Mechanisms of cardioprotection by volatile anesthetics．Anesthesiology 2004；100：707－21．
4）Oldenburg O，Cohen MV，Yellon DM，et al：Mitochondrial $\mathrm{K}_{\text {ATP }}$ channels：role in cardioprotection．Cardiovasc Res 2002；55：429－37．
5）Halestrap AP，Clarke SJ，Javadov SA：Mitochondrial permeability transition pore opening during myocardial reperfusion－a target for cardioprotection．Cardiovasc Res 2004；61：372－85．
6）Ardehali H，O＇Rourke B：Mitochondrial Katp channels in cell survival and death．J Mol Cell Cardiol 2005；39：7－16．
7）Zorov DB，Bannikova SY，Belousov VV，et al：Reactive oxygen and nitrogen species：friends or foes？Biochem－ istry 2005；70：215－21．
8）Riess ML，Stowe DF，Warltier DC：Cardiac pharmacol－ ogical preconditioning with volatile anesthetics：from bench to beside？Am J Physiol Heart Circ Physiol 2004； 286：H1603－7．
9）Kroemer G，Reed JC：Mitochondrial control of cell death． Nat Med 2000；6：513－9．
10）Green DR，Reed JC：Mitochondria and apoptosis．Sci－ ence 1998；281：1309－12．
11）Zaugg M，Lucchinetti E，Uecker M，et al：Anaesthetics and cardiac preconditioning．Part I．Signalling and cyto－ protective mechanisms．Br J Anaesth 2003；91：551－65．
12）Zaugg M，Lucchinetti E，Garcia C，et al：Anaesthetics and cardiac preconditioning．Part II．Clinical implica－ tions．Br J Anaesth 2003；91：566－76．
13）Bienengraeber MW，Weihrauch D，Kersten JR，et al： Cardioprotection by volatile anesthetics．Vascul Phar－ macol 2005；42：243－52．
14）Bouwman RA，Musters RJ，van Beek－Harmsen BJ，et al： Reactive oxygen species precede protein kinase $\mathrm{C}-\delta$ ac－ tivation independent of adenosine triphosphate－
sensitive mitochondrial channel opening in sevoflurane－ induced cardioprotection．Anesthesiology 2004；100： 506－14．
15）Tsutsumi YM，Patel HH，Lai NC，et al：Isoflurane pro－ duces sustained cardiac protection after ischemia－ reperfusion injury in mice．Anesthesiology 2006；104： 495－502．
16）Cason BA，Gamperl AK，Slocum RE：Anesthetic－ induced preconditioning：previous administration of isoflurane decreases myocardial infarct size in rabbits． Anesthesiology 1997；87：1182－90．
17）Cope DK，Impastato WK，Cohen MV，et al：Volatile anes－ thetics protect the ischemic rabbit myocardium from in－ farction．Anesthesiology 1997；86：699－709．
18）Hanouz JL，Yvon A，Massetti M，et al：Mechanisms of desflurane－induced preconditioning in isolated human right atria in vitro．Anesthesiology 2002；97：33－41．
19）Müllenheim J，Ebel D，Bauer M，et al：Sevoflurane con－ fers additional cardioprotection after ischemic late pre－ conditioning in rabbits．Anesthesiology 2003；99：624－31．
20）Piriou V，Chiari P，Knezynski S，et al：Prevention of isoflurane－induced preconditioning by 5 －hydroxy－ decanoate and gadolinium：possible involvement of mi－ tochondrial adenosine triphosphate－sensitive potassium and stretch－activated channels．Anesthesiology 2000； 93：756－64．
21）Tanaka K，Weihrauch D，Ludwig LM，et al：Mitochon－ drial adenosine triphosphate－regulated potassium channel opening acts as a trigger for isoflurane－induced preconditioning by generating reactive oxygen species． Anesthesiology 2003；98：935－43．
22）de Ruijter W，Musters RJ，Boer C，et al：The Cardiopro－ tective effect of sevoflurane depends on protein kinase C activation，opening of mitochondrial $\mathrm{K}^{+}{ }_{\text {ATP }}$ channels， and the production of reactive oxygen species．Anesth Analg 2003；97：1370－6．
23）Obal D，Dettwiler S，Favoccia C，et al：The influence of mitochondrial KATP－channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo．Anesth Analg 2005；101：1252－60．
24）Riess ML，Camara AK，Novalija E，et al：Anesthetic preconditioning attenuates mitochondrial Ca^{2+} over－ load during ischemia in Guinea pig intact hearts：rever－ sal by 5－hydroxydecanoic acid．Anesth Analg 2002；95： 1540－6．
25）Toller WG，Gross ER，Kersten JR，et al：Sarcolemmal and mitochondrial adenosine triphosphate－dependent potassium channels：mechanism of desflurane－induced cardioprotection．Anesthesiology 2000；92：1731－9．
26）Tanaka K，Weihrauch D，Kehl F，et al：Mechanism of preconditioning by isoflurane in rabbits：a direct role for reactive oxygen species．Anesthesiology 2002；97： 1485－90．

27）Müllenheim J，Ebel D，Fräßdorf J，et al：Isoflurane pre－ conditions myocardium against infarction via release of free radicals．Anesthesiology 2002；96：934－40．
28）Chiari PC，Bienengraeber MW，Weihrauch D，et al：Role of endothelial nitric oxide synthase as a trigger and me－ diator of isoflurane－induced delayed preconditioning in rabbit myocardium．Anesthesiology 2005；103：74－83．
29）Tanaka K，Ludwig LM，Krolikowski JG，et al：Isoflurane produces delayed preconditioning against myocardial ischemia and reperfusion injury：role of cyclooxy－ genase－2．Anesthesiology 2004；100：525－31．
30）Roscoe AK，Christensen JD，Lynch C：Isoflurane，but not halothane，induces protection of human myocar－ dium via adenosine A_{1} receptors and adenosine triphos－ phate－sensitive potassium channels．Anesthesiology 2000；92：1692－701．
31）Yvon A，Hanouz JL，Haelewyn B，et al：Mechanisms of sevoflurane－induced myocardial preconditioning in iso－ lated human right atria in vitro．Anesthesiology 2003； 99：27－33．
32）Mathur S，Farhangkhgoee P，Karmazyn M，et al：Cardio－ protective effects of propofol and sevoflurane in ischemic and reperfused rat hearts：role of Katp chan－ nels and interaction with the sodium－hydrogen ex－ change inhibitor HOE 642 （cariporide）．Anesthesiology 1999；91：1349－60．
33）Kersten JR，Orth KG，Pagel PS，et al：Role of adenosine in isoflurane－induced cardioprotection．Anesthesiology 1997；86：1128－39．
34）Ludwig LM，Weihrauch D，Kersten JR，et al：Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane－induced preconditioning in vivo．Anesthesiology 2004；100：532－9．
35）Uecker M，Da Silva R，Grampp T，et al：Translocation of protein kinase C isoforms to subcellular targets in ischemic and anesthetic preconditioning．Anesthesiol－ ogy 2003；99：138－47．
36）Patel HH，Ludwig LM，Fryer RM，et al：Delta opioid agonists and volatile anesthetics facilitate cardioprotec－ tion via potentiation of KATP channel opening．FASEB J 2002；16：1468－70．
37）Kersten JR，Schmeling TJ，Pagel PS，et al：Isoflurane mimics ischemic preconditioning via activation of K sub ATP channels：reduction of myocardial infarct size with an acute memory phase．Anesthesiology 1997；87： 361－70．
38）An J，Varadarajan SG，Novalija E，et al：Ischemic and anesthetic preconditioning reduces cytosolic $\left[\mathrm{Ca}^{2+}\right]$ and improves Ca^{2+} responses in intact hearts．Am J Physiol Heart Circ Physiol 2001；281：H1508－23．
39）Wakeno－Takahashi M，Otani H，Nakao S，et al：Adeno－ sine and a nitric oxide donor enhances cardioprotection by preconditioning with isoflurane through mitochon－
drial adenosine triphosphate－sensitive K^{+}channel－ dependent and－independent mechanisms．Anesthesi－ ology 2004；100：515－24．
40）Toma O，Weber N，Wolter JI，et al：Desflurane precondi－ tioning induces time－dependent activation of protein kinase C epsilon and extracellular signal－regulated kinase 1 and 2 in the rat heart in vivo．Anesthesiology 2004；101：1372－80．
41）Alcindor D，Krolikowski JG，Pagel PS，et al：Cyclooxy－ genase－2 mediates ischemic，anesthetic，and pharma－ cologic preconditioning in vivo．Anesthesiology 2004； 100：547－54．
42）Novalija E，Kevin LG，Camara AK，et al：Reactive oxy－ gen species precede the ε isoform of protein kinase C in the anesthetic preconditioning signaling cascade．Anes－ thesiology 2003；99：421－8．
43）Kevin LG，Katz P，Camara AK，et al：Anesthetic precon－ ditioning，effects on latency to ischemic injury in iso－ lated hearts．Anesthesiology 2003；99：385－91．
44）Riess ML，Novalija E，Camara AK，et al：Preconditioning with sevoflurane reduces changes in nicotinamide adenosine dinucleotide during ischemia－reperfusion in isolated hearts．Anesthesiology 2003；98：387－95．
45）Ebel D，Müllenheim J，Südkamp H，et al：Role of tyro－ sine kinase in desflurane－induced preconditioning．An－ esthesiology 2004；100：555－61．
46）Riess ML，Kevin LG，Camara AK，et al：Dual exposure to sevoflurane improves anesthetic preconditioning in intact hearts．Anesthesiology 2004；100：569－74．
47）Kehl F，Krolikowski JG，Mraovic B，et al：Hyperglycemia prevents isoflurane－induced preconditioning against myocardial infarction．Anesthesiology 2002；96：183－8．
48）Kehl F，Krolikowski JG，Mraovic B，et al：Is isoflurane－ induced preconditioning dose related？Anesthesiology 2002；96：675－80．
49）Weber NC，Toma O，Awan S，et al：Effects of nitrous oxide on the rat heart in vivo．Anesthesiology 2005； 103：1174－82．
50）Varadarajan SG，An J，Novalija E，et al：Sevoflurane be－ fore or after ischemia improves contractile and meta－ bolic function while reducing myoplasmic Ca^{2+} loading in intact hearts．Anesthesiology 2002；96：125－33．
51）Feng J，Lucchinetti E，Ahuja P，et al：Isoflurane postcon－ ditioning prevents opening of the mitochondrial perme－ ability transition pore through inhibition of glycogen synthase kinase 3β ．Anesthesiology 2005；103：987－95．
52）Toller WG，Kersten JR，Gross ER，et al：Isoflurane pre－ conditions myocardium against infarction via activation of inhibitory guanine nucleotide binding proteins．Anes－ thesiology 2000；92：1400－7．
53）Obal D，Weber NC，Zacharowski K，et al：Role of protein kinase $\mathrm{C}-\varepsilon(\mathrm{PKC} \varepsilon)$ in isoflurane－induced cardioprotec－ tion．Br J Anaesth 2005；94：166－73．

54）Gozal Y，Raphael J，Rivo J，et al：Isoflurane does not mimic ischaemic preconditioning in decreasing hy－ droxyl radical production in the rabbit．Br J Anaesth 2005；95：442－7．
55）Xu P，Wang J，Kodavatiganti R，et al：Activation of protein kinase C contributes to the isoflurane－induced im－ provement of functional and metabolic recovery in iso－ lated ischemic rat hearts．Anesth Analg 2004；99：993－ 1000.

56）Lutz M，Liu H：Inhaled sevoflurane produces better delayed myocardial protection at 48 versus 24 hours af－ ter exposure．Anesth Analg 2006；102：984－90．
57）Riess ML，Camara AK，Rhodes SS，et al：Increasing heart size and age attenuate anesthetic preconditioning in guinea pig isolated hearts．Anesth Analg 2005；101： 1572－6．
58）Marinovic J，Bosnjak ZJ，Stadnicka A：Distinct roles for sarcolemmal and mitochondrial adenosine triphos－ phate－sensitive potassium channels in isoflurane－ induced protection against oxidative stress．Anesthesi－ ology 2006；105：98－104．
59）Zaugg M，Lucchinetti E，Spahn DR，et al：Volatile anes－ thetics mimic cardiac preconditioning by priming the activation of mitochondrial KATP channels via multiple signaling pathways．Anesthesiology 2002；97：4－14．
60）Ozcan C，Bienengraeber M，Dzeja PP，et al：Potassium channel openers protect cardiac mitochondria by at－ tenuating oxidant stress at reoxygenation．Am J Physiol Heart Circ Physiol 2002；282：H531－9．
61）Ludwig LM，Patel HH，Gross GJ，et al：Morphine en－ hances pharmacological preconditioning by isoflurane． Anesthesiology 2003；98：705－11．
62）Rivo J，Raphael J，Drenger B，et al：Flumazenil mimics whereas midazolam abolishes ischemic preconditioning in a rabbit heart model of ischemia－reperfusion．Anes－ thesiology 2006；105：65－71．
63）Piriou V，Chiari P，Gateau－Roesch O，et al：Desflurane－ induced preconditioning alters calcium－induced mito－ chondrial permeability transition．Anesthesiology 2004； 100：581－8．
64）Chen Q，Camara AK，An J，et al：Sevoflurane precondi－ tioning before moderate hypothermic ischemia protects against cytosolic $\left[\mathrm{Ca}^{2+}\right]$ loading and myocardial damage in part via mitochondrial Katp channels．Anesthesiology 2002；97：912－20．
65）Zaugg M，Lucchinetti E，Spahn DR，et al：Differential effects of anesthetics on mitochondrial Katp channel ac－ tivity and cardiomyocyte protection．Anesthesiology 2002；97：15－23．
66）Kohro S，Hogan QH，Nakae Y，et al：Anesthetic effects on mitochondrial ATP－sensitive K channel．Anesthesi－ ology 2001；95：1435－40．
67）Kevin LG，Novalija E，Riess ML，et al：Sevoflurane ex－
posure generates superoxide but leads to decreased su－ peroxide during ischemia and reperfusion in isolated heart．Anesth Analg 2003；96：949－55．
68）Novalija E，Kevin LG，Eells JT，et al：Anesthetic precon－ ditioning improves adenosine triphosphate synthesis and reduces reactive oxygen species formation in mito－ chondria after ischemia by a redox dependent mecha－ nism．Anesthesiology 2003；98：1155－63．
69）da Silva R，Grampp T，Pasch T，et al：Differential activa－ tion of mitogen－activated protein kinase in ischemic and anesthetic preconditioning．Anesthesiology 2004； 100：59－69．
70）Wickley PJ，Ding X，Murray PA，et al：Propofol－induced activation of protein kinase C isoforms in adult rat ven－ tricular myocytes．Anesthesiology 2006；104：970－7．
71）Kanaya N，Gable B，Murray PA，et al：Propofol increases phosphorylation of troponin I and myosin light chain 2 via protein kinase C activation in cardiomyocytes．An－ esthesiology 2003；98：1363－71．
72）Kawano T，Oshita S，Tsutsumi Y，et al：Clinically relevant concentrations of propofol have no effect on adenosine triphosphate－sensitive potassium channels in rat ven－ tricular myocytes．Anesthesiology 2002；96：1472－7．
73）Hanouz JL，Zhu L，Persehaye E，et al：Ketamine precon－ ditions isolated human right atrial myocardium：roles of adenosine triphosphate－sensitive potassium channels and adrenoceptors．Anesthesiology 2005；102：1190－6．
74）Müllenheim J，Fräßdorf J，Preckel B，et al：Ketamine，but not $\mathrm{S}(+)$－ketamine，blocks ischemic preconditioning in rabbit hearts in vivo．Anesthesiology 2001；94：630－6．
75）Molojavyi A，Preckel B，Comfère T，et al：Effects of ketamine and its isomers on ischemic preconditioning in the isolated rat heart．Anesthesiology 2001；94：623－9．
76）Schultz JE，Hsu AK，Gross GJ：Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide－sensitive mechanism in the rat heart． Circ Res 1996；78：1100－4．
77）Schultz JE，Hsu AK，Gross GJ：Ischemic preconditioning and morphine－induced cardioprotection involve the delta (δ)－opioid receptor in the intact rat heart．J Mol Cell Cardiol 1997；29：2187－95．
78）Schultz JE，Hsu AK，Nagase H，et al：Tan－67，a $\delta_{1^{-}}$ opioid receptor agonist，reduces infarct size via activa－ tion of Gio proteins and Katp channels．Am J Physiol Heart Circ Physiol 1998；274：H909－14．
79）Patel HH，Hsu AK，Moore，J et al：BW373U86，a δ－ opioid agonist，partially mediates delayed cardioprotec－ tion via a free radical mechanism that is independent of opioid receptor stimulation．J Mol Cell Cardiol 2001；33： 1455－65．
80）Zhang Y，Irwin MG，Wong TM：Remifentanil precondi－ tioning protects against ischemic injury in the intact rat heart．Anesthesiology 2004；101：918－23．

81）Zhang Y，Irwin MG，Wong TM，et al：Remifentanil pre－ conditioning confers cardioprotection via cardiac κ^{-}and δ－opioid receptors．Anesthesiology 2005；102：371－8．
82）De Hert SG，ten Broecke PW，Mertens E，et al：Sevoflu－ rane but not propofol preserves myocardial function in coronary surgery patients．Anesthesiology 2002；97： 42－9．
83）De Hert SG，Cromheecke S，ten Broecke PW，et al： Effects of propofol，desflurane，and sevoflurane on re－ covery of myocardial function after coronary surgery in elderly high－risk patients．Anesthesiology 2003；99： 314－23．
84）De Hert SG，Van der Linden PJ，Cromheecke S，et al： Choice of primary anesthetic regimen can influence in－ tensive care unit length of stay after coronary surgery with cardiopulmonary bypass．Anesthesiology 2004； 101：9－20．
85）Garcia C，Julier K，Bestmann L，et al：Preconditioning with sevoflurane decreases PECAM－1 expression and improves one－year cardiovascular outcome in coronary artery bypass graft surgery．Br J Anaesth 2005；94： 159－65．
86）Conzen PF，Fischer S，Detter C，et al：Sevoflurane pro－ vides greater protection of the myocardium than propo－
fol in patients undergoing off－pump coronary artery by－ pass surgery．Anesthesiology 2003；99：826－33．
87）Julier K，da Silva R，Garcia C，et al：Preconditioning by sevoflurane decreases biochemical markers for myo－ cardial and renal dysfunction in coronary artery bypass graft surgery：a double－blinded，placebo－controlled， multicenter study．Anesthesiology 2003；98：1315－27．
88）Kaneko T，Saito Y，Hikawa Y，et al：Dose－dependent prophylactic effect of nicorandil，an ATP－sensitive po－ tassium channel opener，on intra－operative myocardial ischaemia in patients undergoing major abdominal sur－ gery．Br J Anaesth 2001；86：332－7．
89）Ito I，Hayashi Y，Kawai Y，et al：Prophylactic effect of intravenous nicorandil on perioperative myocardial damage in patients undergoing off－pump coronary ar－ tery bypass surgery．J Cardiovasc Pharmacol 2004；44： 501－6．
90）Mangano DT，Layug EL，Wallace A，et al：Effect of at－ enolol on mortality and cardiovascular morbidity after noncardiac surgery．N Eng J Med 1996；335：1713－20．
91）Wallace A，Layug B，Tateo I，et al：Prophylactic atenolol reduces postoperative myocardial ischemia．Anesthesi－ ology 1998；88：7－17．

[^0]: ＊大阪大学大学院医学系研究科麻酔•集中治療医学講座

