心筋梗塞によるリモデリング心の NCX 発現量増加と二次的虚血によるアポトーシスとの関係

齊 藤 直＊，河 原 㓮－＊

要 旨

本研究では，心筋梗塞によるリモデリング心が虚血•再灌流傷害を受けた際の脆弱性と NCX 発現動態との連関の解明を目的とした。雄の成体ラッ トにおける心筋梗塞由来リモデリング心を摘出し て灌流心を作製し，虚血•再灌流傷害負荷を与え た結果，対照心と比較して有意な NCX1 発現量の増加および Caspase－3 活性と Calpain 活性の増加が確認された。このことは，心筋梗塞による心室リ モデリング時に NCX 発現量が増加したため，その後の虚血•再灌流傷害時に NCX 機能逆転による細胞内 Ca^{2+} 濃度上昇が促進され，その結果アポトー シスの誘導が促進された可能性を示唆している。

緒 言

心肥大•心不全の心筋細胞において，細胞内 Ca^{2+}濃度上昇がその病態に重要な役割を果たしている ことが知られており ${ }^{1)}$ ，心肥大•心不全心筋細胞に おける細胞内 Ca^{2+} 濃度上昇の分子メカニズムを解明することは大変有意義なことである。虚血傷害時には $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ 交換体（NCX）機能の逆転により細胞内 Ca^{2+} 濃度が上昇することが示唆されている ${ }^{2)}$ 。細胞内 Ca^{2+} 濃度上昇はアポトーシスシグナルカス ケードを惹起する因子の一つであることから，虚血•再灌流傷害時における NCX 機能逆転が心筋細胞死に影響を及ぼしている可能性がある。また，肥大心や不全心において NCX 発現の上昇が報告さ れている ${ }^{3,4}$ ことから，もし肥大心筋細胞における NCX 発現上昇が生理的に過剰発現であり，そのこ

[^0]とにより NCX 機能逆転時の細胞内 Ca^{2+} 濃度が異常に上昇するとすれば，このことが肥大心やリモ デリング心における二次的な虚血傷害に対する脆弱性に影響を及ぼしていることが考えられる。そ こで本研究では，リモデリング心が虚血•再灌流傷害を受けた際の脆弱性と NCX 発現動態との連関 の解明を目的とした。

方 法

A．リモデリング心の作製 ${ }^{5,6)}$

成体ウィスターラット $(250 \sim 350 \mathrm{~g})$ に対して冠動脈結紮による心筋梗塞モデルを作製し本実験にお ける一次的虚血とした。 心筋梗塞モデルの作製手順は次の通りである。まず始めにジエチルエーテ ルで麻酔を掛け，その後気管にポリエチレンチュ ーブを挿管してからレスピレータにチューブを繋 いで人工呼吸を施す。それから胸部の皮膚を切開 し，胸筋，前鋸筋を鉗子にて鈍的に剥離切開した後，第 $4 \sim 5$ 肋間を鋏で切開し，胸骨下に開創器を入れて開創部を広げる。その後，心膜を鈍的に剥離した後切開部より心臓を圧出し，冠動脈左前下行枝を起始部より約 2 mm の部位で絹系（5－0）にて結紮する．結紮後は心臓を元の位置に素早く戻し， ナイロン糸（4－0）にて胸部筋肉切開部位および胸部皮膚切開部位を縫合する。麻酔が解けたら挿管し ていたチューブを外し，ラットをケージに移して飼育する。

B．灌流心の作製

二次的虚血は冠動脈結紮手術後 1 週間経過した灌流心において，灌流を止めることによって負荷 した。灌流心の作製方法は次の通りである。まず対象のラットにジエチルエーテルで麻酔を行い，

その後腹部を切開して下大静脈よりヘパリン溶液 を投与する．数十秒後に胸部を開き弓状大動脈よ り自作カニューレを挿管した後，素早く心臓のみ摘出する．カニューレにチューブを繋ぎ，灌流ポ ンプにて Krebs－Henseleit buffer（KHB）溶液（mM： $\mathrm{NaCl} 120 ; \mathrm{KCl} 4.7 ; \mathrm{CaCl}_{2} 1.2 ; \mathrm{NaHCO}_{3} 25 ; \mathrm{MgSO}_{4}$ 1．2； $\mathrm{KH}_{2} \mathrm{PO}_{4}$ 1．2；glucose 11）を $2 \mathrm{ml} / \mathrm{min}$ の一定流量 で灌流させる．KHB 溶液を $95 \% \mathrm{O}_{2}$ と $5 \% \mathrm{CO}_{2}$ の混合ガスにて飽和させ，温度は $37^{\circ} \mathrm{C}$ に保つ（図1）。

C．虚血•再灌流傷害実験プロトコル

図 2 は虚血•再灌流傷害実験プロトコルの概略図である。虚血•再灌流傷害（Ischemic heart）では 30 分間 KHB 溶液を灌流した後，灌流を止めて $37^{\circ} \mathrm{C}$ の生理食塩水の中で 30 分間放置する。その後再灌流として 60 分間 KHB 溶液を灌流する。対照心（Control heart）では 120 分間 KHB 溶液を灌流し続ける。虚血•再灌流実験および対照実験ともリ モデリング心（Remodeled heart）と非手術心（Non－ remodeled heart）の両方を対象として行った。

D．TTC 染色

本実験における細胞壊死部位および形態学的変化を観察するために，本実験モデルから心臓を摘

図1 摘出心灌流システムの概略図

出して Triphenyl－tetrazolium chloride（TTC）染色を行った．TTC 染色では生存細胞が赤く染色される のに対し，壊死細胞は染色されない。染色方法は， まず灌流心作製方法と同様にして心臓を摘出し， カニューレを灌流ポンプに設置されたチューブに繋ぎ，灌流ポンプを用いてチューブより 2% TTC溶液を 20 分間灌流する $(2.5 \mathrm{ml} / \mathrm{min})$ 。その後， 4% フォルマリン溶液を 20 分間灌流する $(2.5 \mathrm{ml} / \mathrm{min})$ 。灌流終了後，心臓を $1 \sim 2 \mathrm{~mm}$ の厚さで横断し，そ の切片をデジタルカメラにて撮影する。

E．ウェスタンブロット解析

活性化した Caspase－3 ならびに活性化した Cal－ pain はアポトーシスシグナルカスケードにおいて重要な役割を果たしている。そこで本実験ではア ポトーシスの誘導を評価する目的で Caspase－3 お よび Calpain の活性強度の解析を行った。また NCX の発現動態を評価するために NCX1 の発現量 の解析も行った．NCX1 の発現量，Caspase－3 の活性強度および Calpain の活性強度を解析するために， Anti－NCX1 抗体，Anti－cleaved caspase－3 抗体およ び Anti－α－fodrin 抗体を用いてウェスタンブロット解析を行った。 α－fodrin は活性化した Calpain によ り特異的に断片化されることよって 145 kDa の断片を生ずる）ため，本実験においては α－fodrin を Calpain 活性強度解析の対象として用いた。方法は まずラットから心臓を摘出して左心室壁の部位を切り取りホモジネイトしてサンプルを採取する。 ここで，リモデリング心においては左心室壁の菲薄化した部位は取り除いた上でホモジネイトする。 ウェスタンブロットには蛋白量が $30 \mu \mathrm{~g}$ となるよう にサンプルを用いる．抗体は各 1 次抗体， 2 次抗体共に 2000 倍に希釈して使用した。
NCX1 の発現量，Caspase－3 活性および Calpain活性の強度を相対的に数値化するために，ウェス タンブロット解析によって求められた X 線フィル

Ischemic heart
図2 虚血•再灌流傷害実験プロトコル

Non－remodeled control heart

Remodeled control heart

Non－remodeled ischemic heart

Remodeled ischemic heart

図3 TTC 染色による心筋壊死部位の同定と心臟の形態変化（スケール・バー： 1 mm ）

ム画像をもとに，画像解析ソフト（Scion Image）を用いて蛋白量の解析を行った。ウェスタンブロッ トを行う際に，特定の 1 頭の非手術対照ラットよ り採取したサンプルを必ず1レーン流し，その解析値を 1.0 としてその他のレーンの蛋白量を数値化した。その後，全ての非手術対照ラット $(\mathrm{n}=6)$ の値の平均値を求め，その値で解析を行った全て の値を正規化してグラフ化した。
グラフ上の測定値は平均土標準偏差で示した。分散分析にて全群間の有意差検定を行い，有意差 があった場合の各群間の有意差検定は Fisher の最小有意差法により行った。危険率が 5% 末満を統計的に有意と判定した。

結 果

A．形態学的変化および細胞壊死発現部位

TTC 染色を行った結果を図 3 に示した。有色の部位は生存細胞を，白く抜けている部位は壊死細胞を示している．図3において形態学的変化を見 ると，リモデリング心では心室リモデリングの特徴である心室壁の菲薄化や心室拡大が現われてい ることが確認できる。一方，非手術心では形態学的変化は認められなかった。また，二次的虚血の有無による特徴的な相違は認められなかった。

細胞壊死に関しては，二次的虚血を行っていな い対照心（Control heart）では壊死細胞が確認されな いが，二次的虚血を行った心臓（Ischemic heart）で は広範囲に渡って壊死細胞が確認された。

B．ウェスタンブロット解析

ウェスタンブロット解析の結果を図4に示した。 リモデリング心における NCX1 の発現量は二次的虚血負荷の有無に拘らず非手術心に対して有意に増加していた（図4A）．NCX1 の発現量に関しては二次的虚血負荷による有意差は現われなかった。

Calpain 活性はリモデリング心において非手術心 よりも有意に高く，また，リモデリング心におい ては 2 次的虚血を行った心臓の方が対照心よりも有意に Calpain 活性が高かった（図4B）。Caspase－3 では Calpain 活性と同様の結果に加え，非手術心に おいても二次的虚血を行った心臓の方が対照心よ りも有意に活性が高かった（図4C）。

リモデリング心と非手術心それぞれにおいて，二次的虚血心と対照心との活性強度の差を見てみ ると，Calpain 活性ではリモデリング心において増加量が大きい傾向を示し（リモデリング心 0.84 vs非手術心 0.29 ），Caspase－3に関しても Calpain 程 ではないもののリモデリング心において増加量が高い傾向を示した（リモデリング心 1.26 vs 非手術心 1．05）。

考 察

心肥大•心不全の心筋細胞において， Ca^{2+}－カル モジュリン複合体によって活性化される脱リン酸化酵素・カルシニューリンが肥大応答の媒介役と なること，細胞内 Ca^{2+} の上昇が心筋細胞アポトー シスを誘導することなど， Ca^{2+} がその病態におい

図4 ウェスタンブロットによる NCX 発現量（A），Calpain 活性（B）および Caspase－3 活性（C）の解析 （グラフ中 $\mathrm{n}=6, \quad *: \mathrm{p}<0.05$ ）

て重要な役割を果たしていることが明らかとなっ てきた ${ }^{8,9)}$ 。
心筋細胞において Ca^{2+} 輸送に関わっている分子 としては，細胞膜上の L 型 Ca^{2+} チャネル， NCX ， Ca^{2+}－ATPase，筋小胞体上のリアノジン受容体，筋小胞体 Ca^{2+}－ATPase などが挙げられる。その中 で，肥大心や不全心においてNCX の発現量が上昇 することが確認されている。

心筋梗塞が生じて虚血状態に陥ると細胞内は酸性に傾く。そこで細胞内 H^{+}を細胞外へ排出して酸毒性を解消するために $\mathrm{Na}^{+} / \mathrm{H}^{+}$交換体が稼動し，細胞内 H^{+}は細胞外へと排出され，同時に細胞内へ Na^{+}が取り込まれる。次に上昇した細胞内 Na^{+}濃度を下げる必要があるが，虚血による細胞内 ATP枯渇などにより $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase の機能は低下して いるため，NCX の機能逆転が生じて細胞内 Na^{+}を細胞外へ排出し，細胞内へ Ca^{2+} を取り込んでいる可能性がある。この時，虚血傷害によって Ca^{2+} ATPase の機能が低下しているため細胞内 Ca^{2+} 濃度が上昇することが考えられる。肥大心筋細胞に おいてNCX 発現量が増加すること，および細胞内 Ca^{2+} 濃度上昇はアポトーシスを誘導することを考慮すると，肥大した心筋細胞は虚血傷害に対して非常に脆弱になっていることが予測される。そこ で本研究では，心筋梗塞によって心室リモデリン グを生じた心臓を対象として，虚血•再灌流傷害 を受けた際の脆弱性と NCX 発現動態との連関を解析した。
TTC 染色によって心筋壊死部位を確認した結果，二次的虚血を行った心臓では心室リモデリングの有無に拘らず壊死細胞が確認できた。目視的には一次的虚血を行っていない心臓の方が，心筋壊死領域が大きい傾向が認められた。これには，一次的虚血によるプレコンディショニング効果の関与 の可能性が考えられる。今後この現象に関する詳細な解析が必要である。

左心室筋における残存心筋細胞を用いたウェス タンブロットの結果，リモデリング心において NCX1 発現量の有意な増加が認められた。二次的虚血の有無による有意差は無かったことより， NCX1 発現量の増加は二次的虚血による直接的な ものではなく，心室リモデリングによって心筋肥大が惹き起こされ，NCX1 の発現量が増加したた

めであると考えられる．
Calpain 活性および Caspase－3 活性は心室リモデ リングの有無で比較した場合，リモデリング心に おいて活性が高く，二次的虚血の有無で比較した場合，二次的虚血を行った心臓において活性が高 かった。また，リモデリング心と非手術心それぞ れにおいて，二次的虚血心と対照心との活性強度 の増加率では，リモデリング心において増加率が大きい傾向を示した。このことは細胞内 Ca^{2+} 濃度上昇によってアポトーシスが促進されたことを示唆している。リモデリング心では NCX1 の発現量 が増加していることより，二次的虚血によって惹 き起こされる NCX の機能逆転と NCX1 発現量の増加が，リモデリング心における二次的虚血による細胞内 Ca^{2+} 濃度上昇を促進し，アポトーシスの誘導を促進している可能性がある。

結 論

NCX1 の発現量はリモデリング心において対照心に比べて有意に増加していることが確認された。 また，虚血•再灌流傷害による Calpain 活性および Caspase－3 活性がリモデリング心において対照心よ りも有意に増加しており，その増加率もリモデリ ング心の方が大きい傾向を示した。このことは， NCX1 発現量の増加によって，虚血•再灌流傷害時の NCX 機能逆転による細胞内 Ca^{2+} 濃度上昇が促進され，アポトーシスの誘導が促進された可能性を示唆している。

以上，本論文の要旨は第 27 回循環制御医学会総会 （2006 年 東京）で発表した。

文 献

1）福富 匡，黒瀬 等：心筋におけるシグナル伝達．生体 の科学 2004；55：296－303．
2）Ladilov Y，Haffner S，Balser－Schafer C，et al：Cardiopro－ tective effects of KB－R7943：a novel inhibitor of the re－ verse mode of $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger．Am J Physiol 1999；276：H1868－76．
3）Sipido KR，Volders PGA，Vos MA，et al：Altered $\mathrm{Na} / \mathrm{Ca}$ exchange activity in cardiac hypertrophy and heart fail－ ure：a new target for therapy？Cardiovasc Res 2002； 53 ： 782－805．
4）Schillinger W，Fiolet JW，Schlotthauer K，et al：Rele－ vance of $\mathrm{Na}^{+}-\mathrm{Ca}^{2+}$ exchange in heart failure．Cardio－ vasc Res 2003；57：921－33．

5）Saitoh T，Nakajima T，Kawahara K：Possible involve－ ment of apoptotic death of myocytes in left ventricular remodeling after myocardial infarction．Jpn J Physiol 2003；53：247－52．
6）Saitoh T，Nakajima T，Takahashi T，et al：Changes in cardiovascular function on treatment of inhibitors of apoptotic signal transduction pathways in left ventricu－ lar remodeling after myocardial infarction．Cardiovasc Pathol 2006；15：130－8．

7）Wang KKW：Calpain and caspase：can you tell the differ－ ence？Trends Neurosci 2000；23：20－6．
8）Wilkins BJ，Molkentin JD：Calcineurin and cardiac hy－ pertrophy：Where have we been？Where are we going？ J Physiol 2002；541：1－8．
9）Wilkins BJ，De Windt LJ，Bueno OF，et al：Targeted disruption of NFATc3，but not NFATc4，reveals an in－ trinsic defect in calcineurin－mediated cardiac hypertro－ phic growth．Mol Cell Biol 2002；22：7603－13．

Pathophysiological Role of the Increase in the Expression of NCX Responsible for the Increased Vulnerability to Ischemia／Reperfusion in the Remodeled Hearts

Tadashi Saitoh＊，Koichi Kawahara＊
＊Laboratory of Cellular Cybernetics，Graduate School of Information Science and Technology， Hokkaido University，Sapporo，Japan．

The aim of this study is to evaluate the relationship between the increase in the expression of $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger（NCX）and the increased vulnerability to ischemia／reperfusion in the remodeled hearts．The coronary artery of male adult rats was ligated．One week later，the hearts were removed and perfused with Krebs－Henseleit buffer（KHB）solution．Control hearts were perfused with KHB solution for 2 hours．Ischemic hearts were first perfused with KHB solution for 30 minutes，and then the perfusion was perfectly termi－ nated and the hearts were immersed in saline for 30 min ． The hearts were perfused again with KHB solution for 1 hour．Western blotting revealed that the expression of
cardiac NCX in the remodeled hearts was significantly increased as compared with that in the non－remodeled hearts．Both the secondary ischemia－induced increases in the caspase－3 cleavage and the calpain activity were more intensively detected in the remodeled hearts than those in the non－remodeled hearts．These results sug－ gest that the expression of cardiac NCX is increased in association with cardiac remodeling，and that the secon－ dary ischemia might result in the marked increase in the concentration of intracellular Ca^{2+} via reversed NCX ， leading to the increase in apoptotic cardiomyocytes in the remodeled hearts．

Key word ： $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger，remodeled heart，ischemia／reperfusion，apoptosis
（Circ Cont 2006；27：352－357．）

[^0]: ＊北海道大学大学院情報科学研究科細胞情報工学研究室

