質疑応答

（質問）肥満細胞由来酵素キマーゼの心血管系に対する多様な作用についてご教示下さい

（広島県：H．A．）

（回答）高 井 真 司＊

ヒトの血管には，アンジオテンシン II 産生酵素 としてアンジオテンシン変換酵素（ACE）とキマー ゼが存在する。正常血管において，ACEの局在部位は血管内皮細胞が主であるが，キマーゼは肥満細胞の顆粒中に存在し，主に外膜に分布している。 また，正常心臓においてもキマーゼは肥満細胞顆粒中に存在しているが，そのキマーゼ含有肥満細胞数は少ない。通常，心血管組織に局在している キマーゼは，肥満細胞顆粒中に蓄積されており，酵素機能を持たないように制御されている。その制御には肥満細胞顆粒中の pH が重要な役割を担 っている。肥満細胞顆粒中の pH は 5 前後に保た れており，この環境下ではキマーゼは酵素機能を発揮できない。キマーゼが酵素機能を発揮するに は至適 pH である 7～9の環境が必要であり，その ためには肥満細胞顆粒中から放出されなければな らない。つまり，キマーゼが酵素機能を発揮する には，組織に機械的刺激や炎症が加わり，肥満細胞から脱顆粒される必要がある ${ }^{1)}$ 。したがって，キ マーゼは，組織傷害や炎症が加わった局所でのみ，酵素機能を発揮すると考えられている。キマーゼ の酵素機能として，アンジオテンシン II 産生が良 く知られているが，それ以外に心血管リモデリン グに深く関与するマトリックスメタロプロテアー ゼ（MMP）－9 の活性化や Transforming Growth fac－ $\operatorname{tor}(\mathrm{TGF})-\beta$ の活性化にも重要な役割を担っている。 さらに，キマーゼは，酵素機能を介し，肥満細胞 の集積を促進することが確認されている。本稿で は，心筋梗塞のイベントを例えに，一連の血管リ モデリングー心臓リモデリングに対するキマーゼの

[^0]多様な作用についてお答えしたい。
血管リモデリングにおけるキマーゼの重要性

A．動脈硬化

心筋梗塞のリスクファクターに動脈硬化が深く関与することは言及するまでもない。ヒトプラー ク形成部位にキマーゼを発現している肥満細胞が多数集積していることが知られている ${ }^{2)}$ 。これは，動脈硬化の進展にキマーゼが関与している可能性 を示唆する。例えば，我々はサル動脈硬化モデル の動脈硬化部位ではキマーゼの遺伝子発現が有意 に増加することを示した ${ }^{3)}$ 。そして，キマーゼ阻害薬は，ハムスターの動脈硬化を有意に抑制すると の報告がある ${ }^{4)}$ 。キマーゼはアンジオテンシン II産生酵素であり，アンジオテンシン II が動脈硬化 の進展に深く関与していることは多くの論文によ り支持されている。また，動脈硬化の進展に MMP－9 も重要な役割を担っている可能性が報告さ れている。例えば，MMP－9 の遺伝子欠損マウスと動脈硬化モデルである ApoE 欠損マウスを交配さ せると動脈硬化形成が有意に軽減される ${ }^{5)}$ 。キマー ゼは，MMP－9 前駆物質を MMP－9 活性体へ変換す ることが明らかにされている ${ }^{6}$ 。したがって，キマ一ゼは，アンジオテンシン II の産生およびMMP－ 9 の活性化を介し，動脈硬化形成を促進している可能性がある。

B．プラーク破綻

急性心筋梗塞のイベント発症に冠動脈プラーク の破綻が大きく関与することはよく知られている。正常の血管では，キマーゼは血管外膜部位の肥満細胞顆粒中に不活性な状態で貯留されているが， プラーク形成部位では血管内側のプラーク被膜の

先端部分にキマーゼが高密度に集積していると報告されている ${ }^{2)}$ 。しかもプラークが破綻している部位では，特に肥満細胞が集積し，その多くは脱顆粒を起こしている。つまり，プラーク破綻を起こ した部位ではキマーゼは強力な酵素機能を発揮し ていると考えられる。何故，このような部位に肥満細胞が高密度で集積し，しかも脱顆粒を起こし ているかは不明だが，このプラーク形成部位では， MMP－9 も高密度に発現している．MMP－9はプラ ーク破綻に深く関与することから，プラーク破綻部位におけるキマーゼの酵素機能の立進はMMP－9 の活性化を促進し，そして，プラーク破綻に大き く関与しているのかもしれない。

心臓リモデリングにおけるキマーゼの重要性

A．心筋梗塞直後

急性心筋梗塞後の血中 MMP－9 活性は高値を示 し，急性心筋梗塞後の MMP－9 活性が高値であれ ばあるほど心機能が低下する傾向が示されている ${ }^{7)}$ ． すなわち，心筋梗塞後のMMP－9 の増加は，梗塞後の心臓リモデリングに大きな影響を与える可能性がある。我々はハムスター心筋梗塞モデルにお いて，キマーゼ阻害薬が心筋梗塞部位で増加する MMP－9を有意に抑制することを確認した（投稿中）．一方，この MMP－9 の増加は ARB では抑制できな かった。つまり，心筋梗塞直後の MMP－9 の遺伝子発現には，アンジオテンシン II 以外の因子が重要であったと考えられる。多くの大規模臨床試験 において，ACE 阻害薬は死亡率を軽減したのに対 し，ARB が心筋梗塞による死亡率を軽減できなか ったことが近年話題になっている ${ }^{87}$ 。実は，ACE阻害薬にはMMP－9 の酵素活性を直接阻害するこ とが確認されている ${ }^{99}$ 。アンジオテンシン II の作用を抑制するという点では，理論的にはARBが ACE 阻害薬を上回る効果が期待できるはずである。何故なら，ACE 阻害薬では抑制不可能なキマーゼ由来のアンジオテンシン IIによる作用もARBなら遮断できるからである。それにも関わらず，ARB による心筋梗塞による死亡率の軽減効果がACE 阻害薬に劣ることを単純に考えれば，心筋梗塞の一連のイベントにアンジオテンシン II 以外の因子が深く関与している可能性である。例えば，この MMP－9 に対するARBとACE 阻害薬の作用の違い

もその可能性の 1 つである．キマーゼ阻害薬もア ンジオテンシンIIの産生抑制に加え，MMP－9の活性化を抑制することより，心筋梗塞後急性期の心臓リモデリングに対し，キマーゼ阻害薬はARB を上回る効果が期待できるのかもしれない。

B．心臓線維化

キマーゼは，心臓線維化にも関与している可能性がある。心筋症患者の心臓では肥満細胞が高濃度に集積しているからである。ハムスター心筋症 モデルにおいては，心臓のキマーゼ活性の増加と共に心臓線維化が元進する，そして，キマーゼ阻害薬は，このハムスター心筋症モデルの心臓線維化を軽減し，心機能低下を有意に予防した ${ }^{10)}$ 。キ マーゼは，心臓線維化に深く関与するTGF－β を直接活性化する．培養ヒト線維芽細胞に精製ヒトキ マーゼを作用させると線維芽細胞の増殖は有意に促進される ${ }^{10)}$ 。その機序は，キマーゼの線維芽細胞の細胞膜に結合しているTGF－β 前駆物質の活性化に起因していた。このキマーゼによる線維芽細胞の増殖促進効果は ARB では抑制できなかった。 すなわち，アンジオテンシン II は，TGF－β の遺伝子発現を増加させるが，キマーゼはアンジオテン シンII 産生を介さずしてもTGF－β 前駆物質の活性化を介し，線維芽細胞の増殖を促進するのである。 したがって，キマーゼ活性の元進は，アンジオテ ンシン II の産生に加え，TGF－β の活性化を介して心臓線維化を促進すると考えられる。

おわりに

キマーゼは，アンジオテンシン II 産生を介した作用に加え，MMP－9 の活性化や TGF－β の活性化 を介し，心血管リモデリングにおいて大きな役割 を担っていると考える。現在，キマーゼ阻害薬は ようやく臨床試験が開始されたところであるが，心血管系に対する臓器保護効果が期待される。

文 献

1）Takai S，Jin D，Muramatsu M，et al：Chymase as a novel target for the prevention of vascular diseases．Trends Pharmacol Sci 2004；25：518－22．
2）Kovanen PT，Kaartinen M，Paavonen T：Infiltrates of activated mast cells at the site of coronary atheroma－ tous erosion or rupture in myocardial infarction．Circu－ lation 1995；92：1084－8．
3）Takai S，Shiota N，Kobayashi S，et al：Induction of chy－
mase that forms angiotensin II in the monkey athero－ sclerotic aorta．FEBS Lett 1997；412：86－90．
4）Uehara Y，Urata H，Ideishi M，et al：Chymase inhibition suppresses high－cholesterol diet－induced lipid accumu－ lation in the hamster aorta．Cardiovasc Res 2002；55： 870－6．
5）Luttun A，Lutgens E，Manderveld A，et al：Loss of ma－ trix metalloproteinase－9 or matrix metalloproteinase－ 12 protects apolipoprotein E－deficient mice against atherosclerotic media destruction but differentially af－ fects plaque growth．Circulation 2004；109：1408－14．
6）Fang KC，Raymond WW，Lazarus SC，et al：Dog masto－ cytoma cells secrete a $92-\mathrm{kD}$ gelatinase activated ex－ tracellularly by mast cell chymase．J Clin Invest 1996； 97：1589－96．

7）Matsunaga T，Abe N，Kameda K，et al．Circulating level of gelatinase activity predicts ventricular remodeling in patients with acute myocardial infarction．Int J Cardiol 2005；105：203－8．
8）Verma S，Strauss M．Angiotensin receptor blockers and myocardial infarction．BMJ 2004；329：1248－9．
9）Sorbi D，Fadly M，Hicks R，et al：Captopril inhibits the 72 kDa and 92 kDa matrix metalloproteinases．Kidney Int 1993；44：1266－72．
10）Takai S，Jin D，Sakaguchi M，et al：A novel chymase inhibitor，4－［1－（［bis－（4－methyl－phenyl）－methyl］－carba－ moyl）3－（2－ethoxy－benzyl）－4－oxo－azetidine－2－yloxy］－ benzoic acid（BCEAB），suppressed cardiac fibrosis in cardiomyopathic hamsters．J Pharmacol Exp Ther 2003； 305：17－23．

[^0]: ＊大阪医科大学薬理学教室

