血管(円筒管)内を流れる液体の流動を考える

谷口興一*

はじめに

レオロジー rheology は、"物質の流動 flow と変 形 deformation を取扱う科学である", と Reiner に よって定義されている. rheo はギリシア語の pE@ に相当し、流れという意味であり、logy(*λoyu*)は 学であるから直訳すると流れ学である. 中国では 流動と変形の頭文字をとって流変学と呼んでいる が、我が国では便利な片仮名があるのでレオロジ ーと称している. また, 生体を取扱う場合はバイ オレオロジー biorheology, 血液を取扱う場合はへ モレオロジーと呼ばれている。 流動曲線が原点を 通る直線を呈するのはニュートン流体であるが, このほかに各種の流動特性(流動曲線)を示す非ニ ユートン流体がある.血液は、ニュートン流体で ある血漿の中に血球を含む懸濁液である. したが って、 当然のことながら、 血液は非ニュートン性 を示し、降伏応力を有する流体である.しかし、

血液は生物であり、血球の大きさ・形状・変形能、 赤血球集合、ヘマトクリット(Ht)、血漿の性状、 温度などの様々な条件によって、流動特性は変化 する^{1~4)}. 昔から Casson 流体や Bingham 流体など が、血液に最も近い流体として用いられてきた. 円筒管内における各種流体モデルの流動の差異を 比較して、血液モデルとして、どのような状態の ときにどの流体モデルが適しているかということ を考えてみる必要がある.

粘性(粘度)

粘性(粘度)viscosity とは、流体の"流れやすさ、 または流れにくさ"を表わす物質定数である。2個 の平板AとBを平行に固定し、AをHからH'ま で力Fによって距離 Δxを一定の速度 u で動かせ ば、A板とB板の間に層流が生じる(図1)。AB間 の流体がAに平行な定常流であるとき、Qouette の流れという。ずり作用が行われている面積をS

図1 粘性の定義

B平板を固定し、力FによりA平板をHからHまで距離xを速度uで動かせば、両板の間に 層流が生じる. ずり作用が行われている面積をSとすれば、ずり応力 τ は τ =-F/Sで示される.

*群馬県立心臓血管センター 総長

とすれば、ずり応力(剪断応力)shear stress τ は式 (1)で表わすことができる.

 $\tau = -F/S$ (1)

また,ずり速度(剪断速度)shear rate は,図1の 0 点から距離 dy だけ離れた部分の流体が両板に平 行に流れる線速度,速度勾配である.これを exy とすれば,式(2)で表わせる.

一方,ずり応力τはずり速度に比例するので, 式(3)で示すことができる.

 $\tau = \eta \, \frac{du}{dy} = \eta \, \frac{dr}{dt} = \eta \, e_{xy} \qquad \dots \dots \dots \dots (3)$

この比例定数ηが粘度である.したがって,粘 度は次式で示すことができる.

$$\eta = \frac{\tau}{e_{xy}} = \frac{\tau}{du/dy}, \quad \pm t \neq \tau = \frac{e_{xy}}{\eta} \quad \dots \quad (4)$$

流動変形量を γ とすれば, ý は変形速度であるか ら, 次式で表わせる.

$$\dot{\gamma} = \frac{dr}{dt} = \frac{1}{dt} \left(\frac{\vartheta \bigtriangleup x}{\vartheta y} \right) = \frac{1}{dy} \left(\frac{\vartheta \bigtriangleup x}{\vartheta t} \right) = \frac{du}{dy} \dots (5)$$

当然のことながら、ずり応力 τ はずり速度 $\dot{\gamma}$ に 比例する.したがって、ずり速度 $\dot{\gamma}$ はずり応力 τ の関数であり、式(6)で表わすことができる.

 $\dot{\gamma} = f(\tau) \cdots \cdots \cdots (6)$

一方、単位について検討すると、dr/dt は変形速 度であり、 $1/dt(=\Delta x/\Delta y)$ における= $\Delta x/\Delta y$ は無次 元であるからずり速度の単位は sec⁻¹である. 国際 単位による粘度の単位は Pascal second (Pa·s)であ る. 1Pa·s = 1Kg/m·sec = 1000g/100cm·sec = 10g/cm·sec=10mPa·sec となるので、通常は mPa· sec を用いる. これが Newton の第2 法則である.

血液が血管内を流れることは流動変形であり⁵⁾, 血液が流動することの物理的特質を表わすのが流 動特性である.粘性の本体は流体の流動における 内部摩擦抵抗,すなわち,流体が剪断応力を受け るとき剪断応力に抵抗する性質である.また,流 体を構成する分子やイオン間の引力,および相隣 る分子の相互運動における運動量交換作用を抑制 せんとする抵抗,すなわち,分子運動に基づく剪 断抵抗である.流動している物質を構成する分子 やイオンは、ある間隔をもって連続的な辷り運動 を行っている.流体が示す剪断抵抗の大部分は分 子の凝集力に基因する.これが流体の粘性の大部 分を占めている.温度が上昇すると流体分子の運 動が激しくなり、流体分子凝集力が減少するので、 粘性は低下し、また、温度が低下すると、流体分 子の運動が減少して凝集力が増大するので、粘度 は上昇するのである.

流動特性

流動特性は、ずり応力(剪断応力)とずり速度(剪 断速度)の関係を表わす流動曲線 flow curve である. 一般に、流体は剪断応力を加えると種々の性状の 流動や変形を呈する.円筒管(血管)を流れる定常 な層流において、軸方向の速度成分 u は、図2 の 円筒座標(r, uz)を考えると、位置 r のみの関数と なる.すなわち、円筒管(血管)を流れる層流にお いて、上記の円筒管座標(r, uz)を考えて、その一 点におけるずり応力 r とずり速度 \dot{r} についてずり 変形を考えれば、速度勾配、軸方向の速度 u、微 小変化 du と $du/dy = \dot{r} = -du/dr$ の比はずり速度に 比例し、単位は sec⁻¹である.

したがって, r の位置におけるずり応力τと速度 勾配との比をとれば, 流動特性的な指標である粘 度ηが求められる.

換言すると、ずり速度(剪断速度)iは、ずり応 力の関数 $i = f(\tau)$ で示され、粘度は、ずり応力と ずり速度の比で示される.

レオロジーで取扱われる流体モデルは色々(図3)

円筒座標(r, u_z)における速度勾配 du/dr は流体の ずり速度に相当する. で、それぞれの流動特性によって、流体の特徴が 定まる.その特徴をみると、完全流体は粘度をも たない理想流体で現実には存在しない.これに対 して、粘性を有する流体を粘性流体と呼び、それ ぞれ特有の粘性をもつ流体が各種存在する(表1). 粘性流体は、Newtonの粘性の法則⁶⁰が成立する Newton 流体と粘性法則が成立しない非ニュートン 流体⁷⁷ (mon-Newtonian fluid)に分類される.Newton 流体の流動曲線は原点を通る直線である.これに 対して、流動特性が原点を通る曲線となるのは、 ダイラタント Dilatant 流体、Power Law 流および 擬塑性流体である(図4).塑性流体の流動特性は、 降伏応力を有し、上に凸または凹なる曲線を呈す る.降伏応力を有し、流動特性が直線となるもの を, Bingham 流体,曲線となるものを非 Bingham 流体という. さらに,降伏応力 τ cy を有し,流動 特性が直線なるものは, Casson 流体^{8,9)}と呼ばれ, Casson⁸⁾や Copley ⁹⁾は血液の流動特性に近いこと を提唱している.各種流体の流動曲線を比較して みる(図3).

① Newton 流体

$$f(\tau) = \frac{1}{\eta_N} \tau \qquad \dots \dots \dots \dots (8)$$

② Bingham 流体

$$f(\tau) = \frac{1}{\eta B} (\tau - \tau By) \qquad \tau > \tau By$$

$$f(\tau) = 0 \qquad 0 < \tau \le \tau By$$

図3 流体の物理学的分類

種類	レオロジー特性	代表的実例		
完全流体	粘性がない理想的な非粘性流体(理想流体)	想像の流体		
粘性流体	粘性をもった流体	ニュートン流体と非ニュートン流体の 総称		
ニュートン流体	ニュートン粘度 η N を有し,粘性の法則が成 り立つ流体	血清, 食塩溶液, アルコール, グリセ リン, 水		
非ニュートン流体	ニュートン粘性法則が成立しない粘性流体	ニュートン流体以外の総称		
ダイラタント流体	ずり速度の増加に伴い粘度が増加する流体	澱粉水溶液, サスペンジョン, 塗料, 流砂		
擬塑性流体	ずり速度の増加に伴い粘度が減少する流体	コロイド溶液, エマルジョン, ラッカ, ワニス, 染料		
塑性流体	ずり速度が増加し,降伏応力 τy以上で流動 する	ビンガム流体,非ビンガム流体, Casson 流体が含まれる.		
ビンガム流体	降伏応力以上の流動で, τとアが直線関係	トマトケチャップ,卵白,固体粒子の 懸濁液		
非ビンガム流体	降伏応力以上の流動で, τとγが非直線関係	印刷インキ,ペイント,血液,塗料, こんにゃく製粉		
Casson 流体	Casson 降伏応力を有し、 $\dot{\gamma} = \frac{1}{\eta_c} \left(\sqrt{C} - \sqrt{\tau_{ey}} \right)^2$	血液(Casson, Copley), 颜料		
チクソトロピー	ずり速度の増加過程と減少過程にヒステレー シスがある	グリース,半田ペースト,粘度サスペ ンジョン,ココア		

表1 流体の種類と代表的な例

Presented by Medical*Online

図4 非ニュートン流体の流動性特性

A: 非ニュートン流体. ずり応力τとずり速度 $\dot{\gamma}$ の比が1とならない($\tau/\dot{\gamma} \neq 1$)流体. $\tau/\dot{\gamma} = 1$ の場合を ニュートン流体という.

B: 塑性流体. ある降伏値以上の応力が生じた場合に初めて変形が生じる流体.

③ Casson 流体

$$f(\tau) = \frac{1}{\eta_c} \left(\sqrt{\tau} - \sqrt{\tau_{cy}} \right)^2$$

$$f(\tau) = 0 \qquad 0 < \tau \le \tau_{cy}$$

$$(10)$$

④ Power Law 流体

⑤ ダイラタント Dilatant 流体

これらの流動曲線 (図4) において、Newton 粘度 $\eta \aleph$ を除くその他の流体の粘度はいずれも見かけの 粘度 apparent viscosity であり、 ηB は Bingham 粘度、 ηc は Casson 粘度、 ηp は Power Law 粘度、 ηD は Dilatant 粘度である.血液の流動特性を、Bingham モデル、Casson モデル、Power Law (指数則)モデ ルのいずれで代表させるかについては、温度や流 速などの物理的条件、変形速度やずり応力などの レオロジー的条件および赤血球変形能、Ht などの 生物学的条件によって異なる. 高い変形速度の領 域では、塑性流体の Casson モデルも、擬塑性モデ ルの Power Law モデルでも、Bingham 流体に近く なる. 逆に低い変形速度の領域では、Casson^{8~10)} モデルは Bingham モデルに、Power Law モデルは Newton モデルに近くなる.

Stokes の式

円筒管内の流体円柱(図5)にかかる力のバランス を考えると、次式となる。

 $\pi r^2 (P + \triangle P) - 2\pi r L_{\tau} = \pi r^2 P$ 上式を整理すると、下記の式が得られる.

壁面のずり応力τwは式(13)となり,式(13)と式 (12)の比からずり応力τは式(15)で表わせる.

速度分布

円筒管内に円筒座標(r, uz)を考え,円筒管軸方 向の速度成分 u は半径の位置 r のみの関数となる.

 $\dot{\gamma} = -\frac{du}{dr} = f(\tau)$

この式を壁面における辷りが無いという条件で 積分すると次式が得られる.

式(16)について, rかτへ変数変換すると, 次式 が導かれる.

 $u = \frac{R}{\tau_w} \int_{r}^{R} f(\tau) d\tau \quad \cdots \quad \cdots \quad (17) \, \&$

ところで、ニュートン流体の速度分布は管壁 y =Rでは u=0、円筒中心軸では u は最大 u max と なる.降伏応力 τ_y を有する塑性流体では、栓半径 ryを有し、r \leq ryでは u=0 となり、栓流を生じる (図6).

流量と平均速度

流量Qは、下記のごとく積分して求める.

半径 R の 円 筒 管 (血 管) の 断 面

式(31)について部分積分を行うと次式となる.

$$\mathbf{Q} = \left[\pi^{\prime 2} \mathbf{u} \right]_{\mathbf{0}}^{\mathbf{R}} - \int_{\mathbf{0}}^{r} \pi r^{2} \left(\frac{du}{dr} \right) dt$$

管壁において辷りがないという条件,すなわち, r=Rのとき u=0 とすれば, $[\pi r^2 u]_0^{\mathbf{R}}=0$ となり, 次式が導かれる.

$$Q = \int_0^r \pi r^2 f(\tau) dr \qquad \dots \dots (32) \not\otimes$$

さらに $r = \tau R/\tau_w$ および $dr = d\tau R/\tau_w$ を用いて, 式(32)をrから τ へ変数変換すれば,式(33)が得られる.

$$Q = \frac{\pi R^3}{\tau_w^3} \int_0^{\tau_w} \tau^2 f(\tau) d\tau \qquad \cdots \qquad (33) \bigstar$$

流動曲線が既知であれば、 τwは式(14)の

τw=R ΔP/2L から算定できるので,この式によっ て圧力損失ΔP と流量 Q の関係が導かれる.式 (16) ※と式(17) ※および式(32) ※と式(33) ※は, 速度分布と流量を示す基本的ならびに重要なレオ ロジー方程式である.

A. Newton 流体

Newton 流体が半径 R の円筒管を定常な層流を なして流れる場合,流量 Q は,式(33)と式(8)か ら次式が得られる.

$$Q = \frac{\pi R^3}{\tau w^3} \int_0^{\tau w} \frac{\tau^3}{\eta N} d\tau = \frac{\pi R^3}{4 \eta N} \tau w \quad \cdots \quad (34)$$

また、τ_w=R ΔP/2L であるから、これを上式に代 入すると式 (35) となり、これがいわゆる Hagen-Poiseuille の式である.

円管内(血管)内流体の速度分布

図6 円筒管(血管)内における流体の流れ R:円管の半径,r:流管の半径,dr:流管rを取り巻く微小流管,ry:非ニュー トン流体の降伏応力の栓半径,u:速度分布

Presented by Medical*Online

したがって、Newton 流体の平均速度 um は式 (35)から式(36)として求められる.

また,式(18)と式(36)からu/umの比は2{1-(r/R)²}となるので,次式が成立する.

B. Bingham 流体

半径 R の円筒管を流れる Bingham 流体の流量 Q は,式(9)と式(33)から次式が得られる.

$$Q = \frac{\pi R^3}{\tau^3_w} \int_0^{\tau w} \frac{1}{\eta B} (\tau - \tau B_y) \tau^2 d\tau$$

 $\tau = r \tau_W/R$ および $\tau_{By} = r_B \tau_W/R$ を上式に代入する. ただし, r_B は Bingham 流体の栓半径である.

$$\mathbf{Q} = \frac{\pi \mathbf{R}^3}{\eta \mathbf{B} \tau \mathbf{w}^3} \int_{\mathbf{R}}^{\mathbf{R}} \left\{ \left(\frac{\tau \mathbf{w}}{\mathbf{R}} r \right)^3 - \frac{\tau \mathbf{w} \mathbf{r}_{\mathbf{B}}}{\mathbf{R}} \left(\frac{\tau \mathbf{w}}{\mathbf{R}} r \right)^2 dr \right\}$$

ここで積分方程式を解き整理すれば次式となる.

$$Q = \frac{\pi R^{3}}{4 \eta B} \left\{ 1 - \frac{4}{3} \left(\frac{r_{B}}{R} \right) + \frac{1}{3} \left(\frac{r_{B}}{R} \right) \right\} (\tau > \tau B_{y})$$

$$Q = 0 \qquad (\tau \le \tau B_{y})$$

$$(\tau \le \tau B_{y})$$

平均速度 um は, um = Q/πR² で求められるので, 次式で表わされる.

$$u m = \frac{R \tau_{w}}{4 \eta_{B}} \left\{ 1 - \frac{4}{3} \left(\frac{r_{B}}{R} \right) + \frac{1}{3} \left(\frac{r_{B}}{R} \right)^{2} \right\} (\tau > \tau_{By})$$

$$u m = 0 \qquad (\tau \le \tau_{By}) \right\} \cdots (39)$$

 $\tau_w = \Delta P/2L$ および $\tau_{By}/\tau = r_B/r$ であるから,式(38) より,Q- ΔP 曲線は式(42)の漸近線を有する.

$$\mathbf{Q} = \frac{\pi \, \mathbf{R}^4 \triangle \mathbf{P}}{\mathbf{8} \, \eta \, \mathbf{B} \mathbf{L}} \left[1 - \frac{4}{3} \left(\frac{\tau \, \mathbf{B}_{\mathcal{Y}}}{\tau} \right) \right] \, \cdots \, \cdots \, (40)$$

この $Q-\Delta P$ の漸近線から Bingham 粘度と降伏 値を求めることができる.

C. Casson 流体

Scatt Blair と Copley は, Casson モデルが人間お よび牛の血液の流動特性に当て嵌まることを報告 した. $\sqrt{\dot{\gamma}} = \sqrt{f(\tau)} e^{-\sqrt{\tau}}$ に対してプロットすれば, 直線が得られ, Casson プロットと呼ばれている.

Casson 流体の流量 Q は,式(10) および式(33) か ら次式が得られる

$$Q = \frac{\pi R^3}{\eta_c \tau_w^3} \int_0^{\tau_w} (\tau - 2\sqrt{\tau_{cy}} \sqrt{\tau} + \tau_{cy}) \tau^2 d\tau$$

上記の積分方程式を解いて、 $r = \tau_w/R$ および $\tau_{cy} = rc \tau_w/R$ を用いて τ からrへ変数変換して整理 すると次式が得られる.ただし、rcは Casson 流動 の栓半径である.

$$Q = \frac{\pi R^{3} \tau_{w}}{4 \eta c} \left[1 - \frac{16}{7} \sqrt{\frac{r_{c}}{R}} + \frac{4}{3} \left(\frac{r_{c}}{R} \right) - \frac{1}{21} \left(\frac{r_{c}}{R} \right) \right]$$

$$(\tau > \tau_{cy}) \cdot (41)$$

$$(\tau \le \tau_{cy}) \cdot (41)$$

また、 $\tau \leq \tau_{cy}$ ならば、流量QはQ=0である.

平均速度 um は um = Q/*n*R² であるから,式(43) から次式が導かれる.

$$u_m = \frac{R_{\tau w}}{4 \eta_c} \left[1 - \frac{16}{7} \sqrt{\frac{r_c}{R}} + \frac{4}{3} \left(\frac{r_c}{R} \right) - \frac{1}{21} \left(\frac{r_c}{R} \right) \right] \cdots (42)$$

式(45)について、右辺を $\sqrt{rc/R}$ で展開して、r< R とすれば、 $\tau_w = \Delta PR/2L$ を用いて次式が得られる.

$$\sqrt{Q} = \sqrt{\frac{\pi R^4 \triangle P}{8 \eta c L}} \left\{ 1 - \frac{8}{7} \sqrt{\frac{\tau c}{\tau}} \right\} \quad \dots \dots (43)$$

式(48)なる漸近線が $\sqrt{Q} - \sqrt{\Delta P}$ で表わされることになり、これから Casson 粘度 η 。と応力の降伏 値 τ cy を求めることができる.

D. Bingham 流体と Casson 流体の見かけの粘度

Bingham 流体と Casson 流体の相対栓半径 rb/R と r-/R とをそれぞれ ab, ac とすれば, 流量 Qb と Qc は下記の式で示される.

$$Q_{B} = \frac{\pi R^{4} \triangle P}{8 \eta_{B} L} (1 - \frac{4}{3} a_{B} + \frac{1}{3} a_{B}^{2}) \qquad \dots \dots (44)$$

$$Q_{c} = \frac{\pi R^{4} \triangle P}{8 \eta_{c} L} \left(1 - \frac{16}{7} \sqrt{a_{c}} + \frac{4}{3} a_{c} - \frac{a^{4}}{21}\right) \cdot \cdot (45)$$

ただし、 $a_B = r_B/R = \tau By/\tau w$ 、 $a_c = r_c/R = \tau cy/\tau w$ である. したがって、それぞれの係数を F_B と F_c とすれば、下記のごとくなる.

$$F_{B} = 1 - \frac{4}{3}a_{B} + \frac{1}{3}a_{B}^{2}$$
(46)

$$F_c = 1 - \frac{16}{7}\sqrt{a_c} + \frac{4}{3}a_c - \frac{1}{21}a_c^4 \cdots (47)$$

Newton 流体の場合は, F_N=1, a_N=0 であるから, Hagen-Poiseuille の式にならって下記のごとく展開 すれば, Bingham 流体, Casson 流体について一般 化できる.

$$Q = \frac{\pi R^4 \triangle P}{8 \eta L} F(a) \qquad \dots \qquad (48)$$

見かけの粘度 η_a を $\eta_{aB} = \eta_B/F_B \eta_{aC} = \eta_C/F_C$ と定義すれば、次式で表わせる.

E. Power Law 流体(指数則モデル)

Power Law モデルの流量Qは,式(13)および, 式(33)と式(11)から下記の式で求められる.

$$Q = \frac{\pi R^3}{\tau w^3} \int_0^{\tau w} \tau^2 \left(\frac{\tau}{k}\right)^{\frac{1}{n}} d\tau$$

上式を $\tau = r \tau_w/R$ を用いて τ から $r \land$ 変数変換し て整理すると,次式が導かれる.

ここで、τw=ΔPR/2Lを代入すると次式になる.

平均速度 $u_m = Q/\pi R^2$ であるから次式が得られる.

$$u_m = \frac{nR}{3n+1} \left(\frac{\tau_w}{k} \right)^n \qquad \cdots \cdots \cdots \cdots (52)$$

式(30)と式(54)から、uとumの関係式が導かれる.

$$u = u_m \left(\frac{3n+1}{n+1}\right) \left\{1 - \left(\frac{r}{R}\right)^{\frac{n+1}{n}}\right\} \cdots \cdots (53)$$

最大速度 umax は um を用いて次式で得られる.

 $\mathbf{u}_{max} = \left(\frac{3n+1}{n+1}\right) \mathbf{u}_{m} \quad \dots \quad \dots \quad (54)$

$$\Delta \mathbf{P} = \frac{2Lk}{R} \left(\frac{3n+1}{n+1} \right)^n \mathbf{u} \text{ mean } \cdots \cdots \cdots \cdots (55)$$

式(55)はn=1のとき Hagen-Poiseuilleの式と一 致する.

F. Dilatant 流体

Dilatant 流体の流量について,式(12)および式 (33)から次式が導かれる.

$$Q = \frac{\pi R^3}{\tau w^3} \int_0^{\tau w} \tau^2 f(\tau) d\tau = \frac{\pi R^3}{\tau w^3} \int_0^{\tau w} \tau^2 \frac{\tau^n}{\eta D} d\tau$$

上式を整理すると、下記の式になる.

$$\mathbf{Q} = \frac{\pi \, \mathbf{R}^3 \, \mathbf{\tau} \, \mathbf{w}^n}{\eta \, \mathbf{d} \, (n+3)} \quad \cdots \cdots \cdots \cdots (56)$$

また,式(14)を用いてτからrへ変数変換すると, 次式が導かれる.

平均速度 um は, 流量 Q を断面積 πR^2 で除して求 められる.

また、 $\tau_w = \Delta PR/2L$ を用いて τ からrへ変数変換すると、次式が導かれる.

ここで、 $u_m \ge R$ の比は $u_m/R = \tau_w/\eta_D(n+3)$ となる. これから log-log の関係を求めると次式となる.

$$log\left(\frac{u_{m}}{R}\right) = nlog(\tau_{w}) - log(n+3)\eta_{d} \cdots (60)$$

また,式(14)および D=2R の関係を用いて, log-log の関係を求めると次式となる.

$$log\left(\frac{2 u_{m}}{D}\right) = nlog\left(\frac{\triangle PD}{4L}\right) - log(n+3)\eta_{d} \cdots (61)$$

2um/D と 4PD/4L を log-log グラフにプロットすると、その勾配から次式で求められる.

血管内壁面ずり速度とレオロジー

人間の体循環において、各部位の動脈や静脈に おける血管内径 D および血流速度 u が判っており、 かつ血流が Poiseuille の法則に従う Poiseuille 流と 仮定すれば、各血管における壁面ずり速度 y w は、 次式によって求められる.

$$\dot{\gamma}_{w} = \frac{\tau_{w}}{\eta} = \frac{32Q}{\pi D^{3}} = \frac{32 \pi D^{2}}{4 \pi D^{3}} = \frac{8 u}{D} \cdots (63)$$

また,血管断面の平均速度 ý wm は次式で得られる.

$$\dot{\gamma}_{wm} = \int_{0}^{R} 2 \pi r \left(\dot{\gamma} \frac{r}{R} \right) dr / \pi R^2 \cdots (64)$$

血液粘度を 3.5mPs とすれば,血管の壁面ずり応 力τwは,式(65)で得られる.

 $\tau w \rightleftharpoons 0.035 \dot{\gamma} w \cdots \cdots \cdots (65)$

式(66)から導かれた壁面ずり速度 yw は式(66) で求められる.

 $\dot{\gamma}_{w} \rightleftharpoons 28.57 \tau_{w}$ (66)

式(65)および式(66)によって算定した結果は**表2** のごとくなるが、血液はニュートン流ではなく、 血液は定常流ではないので、Poiseuille 流とはいえ ない.したがって、**表2**に示すデータは必ずしも 正確な値とは言えないが、それに近い値と見做さ れるので、参考になるであろう.

血管の壁面ずり応力と NO 産生

血液が層流をなして血管内を流れ、血流層の間 に辷りを有する場合、流速 u が大きくなればなる ほど、壁面ずり応力は増大する.壁面ずり応力 τw が増大すればするほど、血管内波からの NO 放出 が増大する (図7)¹¹⁾. 血管内皮細胞から放出される endogenous NO や PG I2 は血管を拡張し¹²⁾,好中球 や血小板の凝集¹³⁾と粘着および atherogenesis を防 止するといわれているが,これには血管内皮由来 拡張因子 [EDRF]¹⁴⁾である NO の役割が大きいとい われている. NO は NO 合成酵素によって産生され る. NO 産生亢進に大きく関係するのは,血流上 昇に伴って惹起される壁面ずり応力の増大であり, 血管内皮細胞の機能の亢進をもたらす^{15~18)}.

NOの放出について見ると、血液中の最高 NO 濃度は、壁面ずり応力が増大してもほぼ一定のレベルを維持するが、NO 放出率はずり応力の大きさに比例する(図7)¹¹⁾. すなわち、NO 放出率が高ければ、血管拡張も増大する. 冠動脈バイパス術(CABG)について見ると、左内胸動脈グラフト(LITA)の壁面ずり応力 τw は大伏静脈グラフト(SVG)の4~6倍も大きく、その持続は LITA の拡張に対して大きな役割を演じ^{19~21)}、これが長期に

表2 ヒトの体循環におけるレオロジーパラメータ

	D (cm)	υ (cm/sec)	$\dot{\gamma}$ (1/sec)	τw (dyne/cm ²)	Re (-)
上行大動脈	2.0~3.2	63	190	6.7	3600~5800
下行大動脈	1.6~2.0	27	120	4.2	1200~1500
太い動脈	0.2~0.6	20~50	700	25	110~850
毛細血管	0.0005~0.001	0.05~0.1	800	28	0.0007~0.003
太い静脈	0.5~1.0	$15 \sim 20$	200	7.0	210~570
大動脈	2.0	11~16	60	2.1	630~900

D:血管径, υ :血液の平均流速, $\dot{\gamma}$:ずり速度, τw :壁ずり応力, Re:レイノルズ数(Re= $\upsilon D/\eta$)

☑7 The changes in the Peak Rate of Release NO and Peak Concentration of NO at Various Levels of Shear Stress¹¹.

Presented by Medical*Online

亘って高い開存率を示す要因の一つと考えられる.

おわりに

循環系は、臓器や末梢組織に対する O2 輸送系と して、瞬時たりとも休むことなく働き続けている. 心臓は、1分間に51、1日に約7.8トンの血液を全 身に対して送血し、1年間では約2850トンの血液 を送血しているわけである.実に,1年間に10ト ントラック 285 台分以上の血液を輸送しているこ とになる. また、体循環系の大動脈、太い動脈お よび太い静脈はずり速度が100以上と比較的大き いので, ずり応力 r とずり速度 y はほぼ直線関係 にあり、Newton 流体に近い挙動をなしていると推 定される.しかし、毛細血管の内径は赤血球の径 7µm より小さいので、血流としては流れることは ないといわれている. すなわち,赤血球は静止状 態においては両面陥凹型(biconeave disc)を呈して いるが、毛細血管内を通過するときは、毛細血管 の内径に合わせて細い流線型の弾丸状となって通 過する.しかも、弾丸状の赤血球と血漿が交互に 流れるという特異な様相を呈する. これは混相流 といわれているが、どのような流動特性を呈する かについては不明である. 混相流に大きく影響す るのは、赤形球の変形能と血漿粘度である.

文 献

- Chien S, Usami S, Taylor HM, et al: Effects of hematocrit and plasma proteins on human blood viscosity at low shear rates. J Appl Physiol 1966; 21: 81–7.
- Nicolaides AN, Bower R, Horbourne T, et al: Blood viscosity, red-cell flexibility, hematocrit and plasmafibrinogen in patients with angina. Lancet 1977; 2: 943–5.
- 小川浩平,谷口興一:血液流動特性の測定と問題点. 循環制御 1990;11:311-9.
- 谷口興一:微小循環の血液レオロジー.呼と循 1989; 37:705-15.
- Krieger IM, Maron SH: Direct determination of the flow curves of Non-Newtonian fluids. J App Physiol 1952; 23: 147–9.
- Newton I: Philosophie Naturalis Principa Mathematica. 1687.
- Scott Blair GW: An equation for the law of blood. Plasma and serum through glass capillary. Nature 1959;

183: 613-4.

- Casson N: A flow equation for pigment-oil suspensions of the printing ink type. In: Mill CC, editor. Rheology of Disperse Systems. Chapter 5, London: Pergamon; 1959. p.84-104.
- Copley AL, Scott Blair GW, Glover EA: Capillary flow and wall adherence of porcine blood and serum in contact with glass and fibrine surface. Kolloid Z 1960; 168: 101–7.
- Chien S: Biophysical behavior of red cells in suspension. In: Surgenor DM, editor. The Red Blood Cells. 2nd ed. Vol 2. New York: Academic Press; 1975. p.1031–3.
- Kanai AJ, Strauss HC, Truskey GA, et al: Shear stress induces, ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ Res 1995; 77: 284– 93.
- Olesen SP, Clapham DE, Davies PF: Hemodynamic shear stress activates a K⁺ current in vascular endothelial cells. Nature 1988; 331: 168–70.
- 13) Chello M, Mastrorobert P, Perticone F, et al: Nitric oxide modulation of neutrophil-endothelial interaction: difference between arterial and venous coronary bypass grafts. J Am Coll Cardial 1998; 31: 823–6.
- 14) Person PJ, Evora PRB, Schaff HV: Bioassay of EDRF from internal mammary arteries: implications for early and late bypass patency. Ann Thorac Surg 1992; 54: 1078–84.
- Miller VM, Burnett JC: Modulation of NO and endothelin by chronic increases in blood flow in canine femoral arteries. Am J Physiol 1992; 263: H103–8.
- Davies PF, Tripathi SC: Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ Res 1993; 72: 239–45.
- 17) Busse R, Miilsch A, Fleming I, et al: Mechanisms of nitric oxide release from the vascular endothelium. Circulation 1993; 87 (Suppl V): V18–25.
- 18) Malinski T, Taha Z, Grunfeld S, et al: Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 1993; 193: 1076–82.
- 19)谷口興一:冠動脈疾患の臨床レオロジー.日本バイ オレオロジー誌 2000:14:1-8.
- 20)谷口興一,金子達夫:冠動脈バイパスグラフトのレ オロジー.日臨床生理誌 2000; 30: 185-91.
- 谷口興一: 循環系レオロジーの臨床. 循環制御 1998; 19:267-73.